Основные характеристики базового блока

Выходные характеристики

Релейный выход		
Внешнее напряжение		Меньше ${ }^{\text {¢ }}$
Изопяция цепи		Механическая
Индикатор активности		Светодиод
Макс.нагрузка	Резистивнаая	3 A
	Индуктивная	80VA
	Ламповая	100w
Минимальная нагрузка		DC5V 10mA
Bpem	выкл \rightarrow ВКл	10 ms
	Вкл \rightarrow В	10 ms
Транзисторный выход		
Внешнее напряжение		DC5~30V
Изопяция цепи		Оптопара
Индикатор активности		Светодиод
Макс.нагрузка	Резистивная	0.3A
	Индуктивная	7.2W/DC24V
	Ламповая	$1.5 \mathrm{~W} / \mathrm{DC} 24 \mathrm{~V}$
Минимальная нагрузка		DC5V 2mA
Токутечки в разомкнутой цепи		Ниже 0.1 mA
Время отклика	выкл ВКл	Менее 0.2 ms
	вкл \rightarrow выкл	Менее 0.2ms

Высокоскоростной импульсный выход

Модепь	RT/T	T4	T6	T10
Кпеммы высокоскоростного выхода	Клеммы YO~Y1	Клеммы Y0~Ү3	Клеммы Y0~Y5	Клеммы Y0~Y11
Внешний источник питания	Меньше DC5~30V			
Индикатор активности	Светодиод			
Max current	50 mA			
Pulse max output frequency	100 KHz			
Дифференциальный высокоскоростной выход				
Модель	XD5-xDnTm-E			
Выходной сигнал	5 V дифференциал			
Максимальная частота	920 KHz			
изоляция цепи	Оптопара			
Индикатор активности	Светодиод			
Время отклика выкл вкл $^{\text {a }}$				

Характеристики связи последовательных портов (RS232/RS485)

Параметры	Значение
Режим связи	Полудуплекс
Скорость передачи данных	4800bps, 9600bps, 19200bps (по умапчанию), 38400bps, 57600bps, 115200bps
Тип данных	Бит данных: 5, 6, 7, 8 (по умолчанию), 9 Стоповый бит: 1 (по умолчанию), 1.5, 2 Чётность бита: нет, нечётный, чётный (по умолчанию)
Режим	RTU (по умолчанию), ASCII, свободный формат
Номер станции	1~255 (по умолчанию 1)
Задержка перед отправкой	1~100ms (по умолчанию 3ms)
Задержка ответа	$1 \sim 1000 \mathrm{~ms}$ (по умолчанию 300 ms)
Количествв повторных попыток	1~20 раз (по умолчанию 3 раза)

Модуль расширения

Для того чтобы удовлетворить больше потребностей пользователя, базовые блоки плК серии XD могут быть снащены разнообразными модулями расширения ввода/вывода, модулями аналогового ввода /вывода, 16 правыми модулями расширения, 1-2 платами BD и 1 левым модулем расширения различных типов.

Основные характеристики

Характеристика	Значение
Окружающая среда	Без коррозийных газов
Рабочая температура	$0^{\circ} \mathrm{C} \sim 60^{\circ} \mathrm{C}$
Температура хранения	$-20 \sim 70^{\circ} \mathrm{C}$
Рабочая влажность	$5 \sim 95 \% \mathrm{RH}$
Влажность хранения	5~95\%RH
Установка	Может быть закреплён при помощи болта МЗ или непосредственно на рейку типа DIN46277 (ширина 35 mm). BD плата устанавливается аналогично Плк.

Модули расширения

Правый модуль расширения
Модуль расширения с вводом/выводом
Данный модуль расширения позволяет расширить базовый блок ПЛК дополнительно на 512 точек
входа/выхода, что позвопяет решать максимальное количество производственных задач на одной системе.
 8 шт./16 шт.

Количество точек ввода/вывода: 32 шт.

Модуль с цифровым вводом

Модель		Описание функции	Характеристика
Tип NPN	Тип PNP		
XD-E8X	XD-E8PX	8 каналов цифрового ввода, питание DC24V	Время входного фильтра 1~50 мс Внешний способ подключения: клеммная колодка Способ подключения: такой же, как и у блока ПЛК
XD-E16X	XD-E16PX	16 каналов цифрового ввода, питание DC24V	
XD-E32X-E	XD-E32PX-E	32 канала цифрового ввода, питание AC220V	
XD-E32X-C	XD-E32PX-C	32 канала цифрового ввода, питание DC24)	

Модуль с цифровым выводом

Модель	Описание функции	Характеристика
XD-E8YR	8 каналов релейного вывода	
XD-E8YT	8 каналов транзисторного вывода	
XD-E16YR	16 каналов релейного вывода	
XD-E16YT	16 каналов транзисторного вывода	
XD-E32YR-E	32 канала релейного вывода с питанием AC220	
XD-E32YR-C	32 канапа релейного вывода с питанием DC24V	
XD-E32YT-E	32 канала транзисторного вывода с питание AC220V	
XD-E32YT-C	32 канала траннисторного вывода с питанием DC2	

Модуль с цифровыми вводами/выводами

Модель		Описание функции	Характеристика
Tип NPN	Tип PNP		
XD-E8X8YR	XD-E8PX8YR	8 цифровых кнналов ввода, 8 релейных каннлов выввоаа с питанием DC24V	R: вфходне реле T: выходно̆ транзистор Врепия оाклика R: менее 10 мсВремя отклика Т: менее 0,2 мс Максимальная нарузка R: резистивная 3 , ИНДдуसивная 80VA Фыо льная наруука Т: максимальный ыходной ток каждой тони составпяет 0,3 А Способ подключенния: такой же, как и у блока ПЛк
XD-E8×8Yt	XD-E8P88YT	8 Lифроввх кеналов ввода, 8 рензисторыкх каналов вьвода с птаннем DC24V	
XD-E16X16YR-E	XD-E16PX16YR-E		
XD-E16X16YR-C	XD-E16PX16YR-C	16 цифровых каналов воода, 16 регеинньк канапов вывода с питаннем DC24V	
XD-E16X16YT-E	XD-E16PX16YT-E		
XD-E16X16YT-C	XD-E16PX16YT-C		

Аналоговый и температурный модули расширения
Преобразует цифровой сигнал в аналоговый и наоборот. Благодаря модулю расширения аналогового ввода/вывдда и модупю контропя
laronata din
лагодаря функции РID-регулирования, блок можно использовааия
бопее шииоко и гибко с бопее высокой точностьюю регулирования. бопее широко и гибко с более высокой то
Необходимо зддать только четыре параметра
Каждый канал модуля управления температурой может осуществляп
ріD-регулирование независимо, имеет функцию самонастройки

Модуль с аналоговым вводом (тип AD)

Модель	Каналов	Входной сигнал	Характеристики
XD-E4AD	4	Входное напряжение: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} /-5 \sim 5 \mathrm{~V} /-10 \sim 10 \mathrm{~V}$ Входной ток: $0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA} /-20 \sim 20 \mathrm{~mA}$	Источник питания: $\mathrm{DC} 24 \mathrm{~V} \pm 10 \%, 150 \mathrm{~mA}$ Скорость преобразования: 2 мс/канал Разрешение 1/16383 (14 бит) Комплексная точность $\pm 1 \%$ Коэффициент фильтра AD 0~254 Добавлен бит разрешения канала Канал AD имеет функции короткого замыкания, обрыва цепи и обнаружения превышения диапазона
XD-E8AD	8	Входное напряжение: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} /-5 \sim 5 \mathrm{~V} /-10 \sim 10 \mathrm{~V}$ Входной ток: $0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA} /-20 \sim 20 \mathrm{~mA}$ (первые четыре канала - напряжение, последние четыре канала - ток)	
xD-E8AD-A	8	Входной ток: 0~20mA/4~20mAl-20~20mA	
xD-E8AD-v	8	Входное напряжение: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} / 5 \sim 5 \mathrm{~V} /-10 \sim 10 \mathrm{~V}$	
xD-E12AD-V	12	Входное напряжение: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} / 5-5 \mathrm{~V} /-10 \sim 10 \mathrm{~V}$	

Модуль с аналоговым выводом (тип DA)

Модель	Канапов	Входной сигнал	Характеристики
XD-E2DA	2	Выходное напряжение: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} /-5 \sim 5 \mathrm{~V} /-10 \sim 10 \mathrm{~V}$ Выходной ток: 0~20mA/4~20mA	Источник питания: $\mathrm{DC} 24 \mathrm{~V} \pm 10 \%, 150 \mathrm{~mA}$ Cкорость преобр азввания 2 мскканал Разрешение 1/4095 (12 бит) Добавлен бит разрешения канала
XD-E4DA	4	Выходное напряжение: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V}$ Выходной ток: $0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$	

Модуль контроля температуры (тип РТ\&ТС)

Модель	Канапов	входной сигнал	Характеристики
XD-E6PT-P	6	PT100 платиновый термистр Диапазон температуры: $-100^{\circ} \mathrm{C} \sim 500^{\circ} \mathrm{C}$ цифровой выходной диапазон значений: -1000~5000 16 бит со знаком, двоичный	Источник питания: $\mathrm{DC} 24 \mathrm{~V} \pm 10 \%, 150 \mathrm{~mA}$ Точность регулирования $\pm 5 \%$ Разрешение $0,1^{\circ} \mathrm{C}$ Комплексная точность $\pm 1 \%$ (относительное максимальное значение) Скорость преобразования РТ 80 мс/канал Скорость преобразования РТЗ 450 мс/4 канала Коэффициент фильтра РТ 0~254 Каждый канал имеет независимые параметры PID и поддерживает функцию самонастройки Дополнительный период выборки Изоляция между каналами XD-E6TC-P-H
XD-E2TC-P	2	Типы термопар: K, S, E, N, B, T, J и R Температурный диапазон $0^{\circ} \mathrm{C} \sim 1300^{\circ} \mathrm{C}$ (для типа K) чифровой выходной диапазон значений: $0 \sim 13000$ 6 бит со знаком, двоичный)	
XD-E6TC-P	6		
XD-E6TC-P-H	6		
XD-E4PT3-P	4	Pt100 платиновый термистр Диапазон температуры: $-100^{\circ} \mathrm{C} \sim 500^{\circ} \mathrm{C}$ (цифровой выходной диапазон значений: -1000~5000 16 бит со знаком, двоичный)	

Модули расширения

Аналоговый гибридный модуль ввода/вывода (тип nADxPTmDA)

Модель	Каналов		Сигнал ввода/вывода	Характеристики
	Ввода	Вывода		
XD-E4AD2DA	4	2		Источник питания $\mathrm{DC} 24 \mathrm{~V} \pm 10 \%, 150 \mathrm{~mA}$ Скорость преобразования 2 мсс (канал Входное разрешение $1 / 403$ (14-бит) Выходное разрешение $1 / 4095$ (Коэффициент филытрации AD 0~254 Комплексная точность $\pm 1 \%$ добавпен бит разрешения канала Канап AD имеет функцию обнаружения короткого замыкания, обрыва цепи и превышения диапазона
XD-E2AD2PT2DA	4	2	Входное напряжение: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V}$ Входной ток: $0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$ ыходное напряжение: : $\sim 5 \mathrm{~V} / 0 \sim$ выходной ток: $0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$ Термометр: PT100 платиновый термистор Температурный диапазон: $-100^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$ (цифровой выходной диапазон значений -1000~5000, 16 бит со знаком, двоичный)	Источник питания: $\mathrm{DC} 24 \mathrm{~V} \pm 10 \%, 150 \mathrm{~mA}$ Скорость преобразования 2 мссканал Входное разрешение $1 / 16383$ (16 бит) Выходное разрешение $1 / 1023$ (10-бит) Коэффициент фильтрации AD 0~254 Разрешение канала РТ $0.1^{\circ} \mathrm{C}$ Комплексная точность $\pm 1 \%$ (относительное максимальное значение) Коэффициент фильтра РT 0~254 Добавлен бит разрешения канала
XD-E3AD4PT2DA	7	2	Входное напряжение: $0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$ Выходное напряжение: 0~5V/0~10V Термометр: РТ100 платиновый термистр Температурный диапазон: $-100^{\circ} \mathrm{C} \sim 500^{\circ} \mathrm{C}$ цифровой выходной диапазон значений -1000~5000 6 бит со знаком, двоичный)	Источник питания: $\mathrm{DC} 24 \mathrm{~V} \pm 10 \%, 150 \mathrm{~mA}$ Скорость преобразования 2 мссканал Входное разрешение $1 / 16383$ (14 бит) Выходное разрешение $1 / 1023$ (10-бит) Коэффициент фильтрации AD 0~254 Разрешение канала РТ $0.1^{\circ} \mathrm{C}$ Комплексная точность $\pm 1 \%$ (относительное максимальное значение) Коэффициент фильтра РT 0~254 Добавлен бит разрешения канала

Весовой модуль расширения

Используется для преобразования аналогового сигнала
тензодатчика в цифровой сигнал. Весовой модуль обпадае

 Особенности модуля
(1) Новый алгоритм, оптимизированная аппаратная система, более быстрый иточный контроль вввешивания 2) Аналоговые сигналы напряжения от 4 тензодатчиков могут быть З В Высокопроизводительный АцП, скорость выборки до 450 раз/с 4) Точность отображения до $1 / 300000$
(5) Функция автоматического отслеживания нуля

скорости по шине, что нее влияет на скорость преобкразования

Характеристика	Значение	
Модель	XD-E1WT-C, XD-E2WT-C, XD-E4WT-C	XD-E1WT-D, XD-E2WT-D, XD-E4WT-D
Диапазон аналогового ввода	DC0~10mV (sensor 2 mV)	DC-20~20mV
Фактическое разрешениө АЦП	1/1048575 (208it)	1/8388607(23Bit)
Точность отображения	1/300000	1/500000
Нелинйность	0.01\%F.S0.01\%F.S	
Скорость конверсии	150 раз l c, $300 \mathrm{pa3} \mathrm{l}$ c, 450 раз $/ \mathrm{c}$ опционально	
Источник питания	$\mathrm{AC} 22 \mathrm{OV} \pm 10 \%, 50 / 60 \mathrm{~Hz}$	DC24V $\pm 10 \%$
Питание активации тензодатчика	$5 \mathrm{VDC/} / 120 \mathrm{~mA}$, четыре тензодатчика по 350Ω могут быть подкпючены параллельно	
Software version	V3.5.1 и выше	V3.5.3 и выше

Измерительный модуль SSI энкодера XD-E4SSI

Ссобенности модуля
Поддержка 4-канального абсолютного датчика положения или обнаружения датчик
2. Подходит дпя $10 \sim 31$ бит SSI энкодера, поддерживает связь частотой $125 \mathrm{KHz} \sim 1 \mathrm{MHz}$

кодирование кодом Грея или в двоичном формате
Имеет функиии обнаружения разь
Имеет функцио обнаружеиа разъедннения и сигнапизацию

Характеристики

Характеристика	Значение
Источник питания	DC24V (диапазон: 20.4~28.8V)
Энергооотребление модуля	1W (без нагрузки)
Определение положения	Абсолютный режим
Разница между данными SSI и сигналом часов	Соответственно стандарту RS422
Номер бита энкодера	10bit 31 bit
Выхонно̆ цифровой диапаз	0~максимальное значение энкодера
Разрешение	1/максимальное значение энкодера
Частота связи	$125 \mathrm{KHz} \sim 1 \mathrm{MHz}$
Тип кодирования	Код Грея или двоичный код
Абсоппттая точность	1\%
Скорость преобразования	400мкс/канал
источни	DC24V $\pm 10 \%, 100 \mathrm{~mA} \mathrm{или} 300 \mathrm{~mA}$

Макроизмерительный модуль XD-E2GRP

Прецизионный оптический датчик перемещения также называемый атчиком положения. Цифровые датчикк перемещения широко
спопьзуются дпя апгрейда старых и оснащения новых станков.
 индикации, они способны более точно обрабатывать
XD-E2GRP широко испопьзуется в для точных измерений, таких как ределение внутреннего и внешнего диаметра подшипника

Эксплуатационные характеристики
(1) Диапазон: ± 1000 мкм
(2) Разрешение: 0.1 мкм

Погрешность повторяеси: $\leq 0.1 \%$
5. Рабочая температура: $-10 \sim 50^{\circ} \mathrm{C}$
(6) Режим сбора данных: параллельная связь

XD-E4SSI скорость связи и дпина кабеля

Скорость связи	Дпина экранированной витой пары
125 KHz	Maх 320 m
250 KHz	Max 160 m
500 Kzz	Max 6 m
1 MHz	Max 20 m

Характеристики

Характеристика	Значение
Источник питание	DC24V $\pm 10 \%$
Нелинейность	0.001% F.S
Дрифт времени	0.005\%F.S
Чувствительность ввода	$0.004 \mathrm{WV} / \mathrm{d}$
Абсолютная точность	0.1\%

Модули расширения

Левый модуль расширения ED

в дополнение к поддержке правого модуля расширения, ПЛК серии XD могут также расширять еще один ED-модуль
на левой стороне. Левый модуль расширения ЕD выполнен в виде тонкой пластины, занимает мало места и имее функции АЦП/ЦАП, измерения температуры, удаленной связи и т.

Аналоговый и температурный модуль расширения ED

Модель	Сигнал ввода/вывода	Характеристики
XD-4AD-A-ED	4 входных канала, ток: $0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$	Источник питания модуля: $\operatorname{DC24V} \pm 10 \%$, 150 мА Скорость преобразования: 10 мс (все каналы) Aba $1 / 4095$ (12 бит) Разрешение выхода по токунапрряжению: 1/1023 (10-бит) РТ: Дексная ТОЧнось Преорразвания АЦПЛЦАП: $\pm 1 \%$ РТ: Диапазон температур: - $100 \sim 500^{\circ} \mathrm{C}$ Цифровой выходной диапазон:-1000~5000 разрешение температурного входа. 10 С
XD-4AD-V-ED	4 входных канала, напряжнние: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V}$	
XD-4DA-A-ED	4 выходных канала, ток: $0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$	
XD-4DA-V-ED	4 выходных канала, напряжение: $0 \sim 5 \mathrm{~V} / \sim \sim 10 \mathrm{~V}$	
XD-2AD2DA-A-ED	2 входных канала, ток: $0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$ 2 выходных канала, ток: 0~20mA/4~20mA	
XD-2AD2DA-V-ED	$\begin{aligned} & 2 \text { входных канала, напряжение: } 0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} \\ & 2 \text { выходных канала, напряжение: } 0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} \end{aligned}$	
XD-2AD2PT-A-ED	2 входных канала, ток: $0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$ 2 входных температурных канала: РТ100 термистор	
XD-2AD2PT-V-ED	$\begin{aligned} & 2 \text { входных канала, напряжение: } 0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} \\ & 2 \text { входных температурных канала: PT100 термистор } \end{aligned}$	
XD-2PT2DA-A-ED	2 входных температурных канала: PT100 термистор 2 выходных канапа, ток: $0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$	
xD-2PT2DA-V-ED	2 входных температурных канала: PT100 термистор 2 выходных канала, напряжение: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V}$	

Блок расширения связи ED

плК может осуществлять беспроводную передачу данных WIFI, 4G и другие, а также проводную связь, такую как RS232, RS485 и CANopen XD-4GBOXL-ED Левый модуль расширения 4GBOX

	(1) Реализует беспроводную загрузку $и$ мониторинг программы ПЛК в реальном времени
©	(2) SMS-коммуникация с мобильным телефоном
\bigcirc	(3) Поддержка удаленного мониторинга
	(4) Поддержка разных операторов связи
	(5) Поддержка функции GPS позиционирования
三	(6) в качестве левого модуля расширения к серии
\equiv	(7) Поддержка полевой шины (X-NET) и глубокая оптимизация мониторинга данных
	(8) Длительное время работы в режиме онлайн, функция повторного вызова при отключении и функция сторожевого таймера

XD-NES-ED Левый модуль расширения с RS232/RS485

XD-COBOX-ED Модуль расширения с CANopen

$$
\begin{aligned}
& \text { Mодупь ED серии XD может расширить один порт } \\
& \text { RS232 или RS485 (поддержка связии по полевой шнн }
\end{aligned}
$$

Плата расширения BD

Плата расширения связи BD
XD-Ne-bD
Ллата расширения вD серии XD $^{\text {- }}$

Название	Функция
Индикатор связи	Индикатор мигает, когда плата BD успеш обменивается данными
Клеммная колодка	Слева находится входная сигнальная клемма а справа - выходная сигнальная клемма

XD-NS-BD
Модупь ра

Расширение BD с точными часами
XD-RTC-BD
опее точная функция часо
погрешностью около 13 с
месяц.
ребование кппошивке
vз.5.3 ивыше.

Модули расширения

Специальный модуль серии CCSD для применения на морских судах

Основные характеристики

Характеристика	Значение
Окружающая среда	Без коррозийных газов
Рабочая температура	$0^{\circ} \mathrm{C} \sim 60^{\circ} \mathrm{C}$
Температура хранения	$-20 \sim 70^{\circ} \mathrm{C}$
Рабочая влажность	5~95\%RH
Влажность хранения	5~95\%RH
Установка	Можно закрепить винтами МЗ или непосредственно установить на направляющую DIN46277 (ширина 35 мм). Плата BD устанавливается непосредственно на переднюю часть ПлК

Цифровой модуль ввода/вывода CCSD-nXmY

Модель	Описание функций	Характеристика
CCSD-E16X16YR-E	16 цифровых каналов ввода, 16 релейных каналов вывода, питание AC220V	Время входного фильтра $1 \sim 50$ мс R: выходное реле :і: выходной транзистор Время отклика R менее 10 мс Время откпика Т менее 0,2 ма Максимальная нагрузка R: резистивная 3 A индуктивная 80 VA Максимальная нагрузка Т: максимапьный выходной ток каждой точки 0.3 А Внешний способ подключения: кпеммная колодк Способ подкпючения: такой же, как у ПЛК
CCSD-E16X16YR-C	16 цифровых каналов ввода, 16 релейных каналов вывода, питание DC24V	
CCsD-E16x16YT-E	16 цифровых каналов ввода, 16 транзисторных каналов вывода, питание AC220V	
CCSD-E16X16YT-C	16 цифровых каналов ввода, 16 транзисторных каналов вывода, питание DC24V	

Аналоговый модуль ввода/вывода CCSD-nAD

Модель	Каналов	входной сигнал	Характеристика
CCSD-E8AD	8	Входное напряжение: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} /-5 \sim 5 \mathrm{~V} /-10 \sim 10 \mathrm{~V}$ Входной ток: $0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA} /-20 \sim 20 \mathrm{~mA}$ (первые четыре канала - напряжение, поспедние четыре - ток)	Источник питания для аналогового $\mathrm{DC} 24 \mathrm{~V} \pm 10 \%$, 150 mA сорость преобразования 2 мс/канал Разрешение 1/16383 (14 бит) Комплексная точность $\pm 1 \%$ Коэффициент фильтра AD 0~254 Добавлен бит разрешения канала Канал AD имеет функции обнаружения короткого замыкания, обрыва цепи и превышения диапазона

Аналоговый модуль ввода/вывода CCSD-nADmDA

Модель	Каналы		Сигналы ввода/вывода	Характеристики
	Ввода	Вывода		
CCSD-E4AD2DA	4	2	Входное напряжение: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} /-5 \sim 5 \mathrm{~V} /-10 \sim 10 \mathrm{~V}$ Входной ток: $0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA} /-20 \sim 20 \mathrm{~mA}$ Выходное напряжение: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} /-5 \sim 5 \mathrm{~V} /-10 \sim 10 \mathrm{~V}$ Выходной ток: $0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$	Источник питания: $\mathrm{DC} 24 \mathrm{~V} \pm 10 \%, 150 \mathrm{~mA}$ Скорость преобразования 2 мс/канал Выходное разрешение 1/4095 (12 бит) Комппексная точность $\pm 1 \%$ Коэффициент фильтра AD 0~254 Добавлен бит разрешения канала Канал AD имеет функцию обнаружения короткого замыкания, обрыва цепи и превышения диапазон

Модуль контроля температуры CCSD-nPT-P/CCSD-nTC-P

Модель	Каналы	Сигналыввода	Характеристики
ccsd-E6PT-P	6	PT100 платиновый термистор Температурный диапазон $-100^{\circ} \mathrm{C} \sim 500^{\circ} \mathrm{C}$ (цифровой выходной диапазон - $1000 \sim 5000$, 16-bit со знаком, двоичный)	Источник питания: $\mathrm{DC} 24 \mathrm{~V} \pm 10 \%, 150 \mathrm{~mA}$ Точность контроля: $\pm 0,5 \%$ Разрешение $01^{\circ} \mathrm{C}$ Комплексная точность $\pm 1 \%$ Скоосительное максимальное значение) Скорость преобрразования TC 80 мс/канал Скорость пееобразования РТЗ $450 \mathrm{mc} / 4$ канала Каждый канал имеет независимые параметры PID попцерживает функцию самон
ccsd-E6TC-P	6	Термопары (TC) типа K, S, E, N, B, T, Jи R Температурный диапазон $0^{\circ} \mathrm{C} \sim 1300^{\circ} \mathrm{C}$ (тип K) (чифровой выходной диапазон $0 \sim 13000$, 16-bit co знаком, двоичный)	

Плата расширения связи BD

Название		Функция
Индикатор связи		Индикатор мигает, когда
Клеммная колодка	A	$485+$
	B	485-
	sG	Заземление сигнад
	-	Сво
Переключатель сопротивления клемм		Выберете с помощью перекпючат требуется ли терминальное сопро

Модуль расширения

Модуль－каплер серии MA для работы с удалёнными модулями	
Модули серии МА включают цифровой вход и выход，аналоговый вход и выход， контроль температуры，коммуникационный порт RS485，основанный на стандартно протоколе связи Modbus，может подключаться к Плк，операторской панели интегрированным контроллерам идругому оборудованию，поддерживающему протоко．Modbus．Он подходит для конттоля температуры，уровня жидкости，давления других систем управления процессами．Поддерживает расширение до 16 модулей．	
Цифровой модуль расширения MA－nXnY	
Мод	ояснение
MA－8X8YR	8 цифровых каналов ввода， 8 цифровых каналов вывода （релейные выходы）
MA－8X8YT	8 цифровых каналов ввода， 8 цифровых каналов вывода （транзисторные выходы）
MA－16X	16 цифровых каналов ввода
MA－16YR	16 цифровых каналов вывода（релейные выходы）
MA－16YT	16 цифровых каналов вывода（транзисторные выходы）

Аналоговый модуль расширения MA－nDA

Модель	Пояснение
MA－2DA	2 канала，10－битный высокоточный аналоговый выход （напряжение／ток на выбор）
MA－4DA	4 канала， 10 －битный высокоточный аналоговый выход （напряжение／ток на выбор）

Аналоговый модуль ввода MA－nAD

Модель	Пояснение
MA－4AD	канала，12－битный высокоочный налоговый ввод （напряжение／ток на выбор），РID－регулирование каждого канала

Аналоговый модуль вывода MA－nADmDA

Модель	Пояснение
MA－4AD2DA	4 канала，12－битный высокоточный аналоговый ввод （напряжение／ток на выбор），PID－регулирование каждого канала 2 канала， 10 －битный высокоточный аналоговый вывод （напряжение／ток на выбор）

Модуль контроля температуры MA－nPT－P／MA－nTCA－P

Модель	Пояснение
MA－6PT－P	6 каналов ввода PT100，PID－регулирование каждого канала 6 каналов вывода 1 mA постоянный выходной ток，не подверженный влиянию окружающей среды
MA－6TCA－P	6 каналов ввода термопары，PID－регулирование каждого， 6 каналов вывода．

Габариты
（Единицы：мм）

Комплектующие

Перечень комплектующих для основного блока

Кабель связи／программирования
XVP／DVP
Дпасваз

Дпя пере
Unя перехо

абель－переходник с DB9 на RS486 JC－EB－Length
Каепль DB9－RS485 для связи RS485 между операторской панельо и ПлК．
бывает трехх видов：JC－ЕВ－3（ЗМ），JС－ев－ 5 （ 5 M ），JC－EB－8（ 8 m ）

Полевая шина X－NET

JC－EA－Length

 Применяется виестеJC－EA－1（ 1 m ），JC－EA－05（5m

JC－EA－ $30(30 \mathrm{~m})$ ，JC
JC－EA－100

USB－кабель принтера JC－UA－15
Спееиаанный кабельь загууки дпя продуктов
 ．еерный，сдвоиными матнитными

Релейный модуль
JR－EH
Нодходит во всех случаях связи через

Адаптер для загрузки программ JD－P03
（1）Может испопьзоватьья без компьютера для передачи программи загрузпи
данных межпу несколькими ПЛКК Хіпје．

 шины Ethernet．Для скачивания панны
（3）JD－Роз имеет небольш
занимает мало места．

Перечень комплектующих для модулей расширения

Базовый блок серии XD

Соответствующая модель				
Cерии	XD1	XD2	XD3	XD5
Tочки	$10 / 16$ точек			

точки	$24 / 32$ точки

\qquad

Правый модуль расширения серии XD

Левый модуль расширения ED для ПЛК серии XD

