

ПЛК
Средние•Малогабаритные • Компактные

Обзор ПЛК
 XG серия

ПлК среднего размера серии XG имеет принципиально новый диззйн,
преимуществами высокой скорости, большей ёмкости и значительно
расширенными функциями, что предоставляет клиентам более совершенные решения и создаёт более высокое качество

XD серия Малогабаритные плк

Малогабаритные ПЛК серии XD отличаются высокой скоростью стабильной производительностью, полным набором функций широкой областью применения, что по
разнообразные потребности пользователей.

ЛЛК серии XL компактны и практичны, имеют ультратонкий корпус. оступная цена позволяет обеспечить решение большинств функциональных задач в ограниченном пространстве

Новые продуктыш
XDH / XLH
2~ 4 МБ - очень большая программная емкость
дойной сетевойора...........

x каналыНый высокосоростной счетный вход и 4 -х канальный
высокоскоростной импупоный выход

ооная поддержка спецификации программирования PLCopen

Зозможность ссылаться на многие стандартные бибпиотеки функций
Разработка собственных функциональных блоков и библиотек инструкций
Управление движением через EtherCAT

Дистанционный ввод/вывод EtherCAT
ахканальыый синхронный электронный САМ
Связь через Ethernet

агруука команд во время работы (онлайн)

\qquad
\qquad

XL5N

\qquad
\qquad

Контроллеры серии XS на CODESYS

Разработаны на основе платформы CODESYS, включают в себя ПЛК среднего размера, малогабаритные и компактные контроллеры

Средние ПЛК
 Xs3-26T4

1 Управление сетью

- Благодаря собственному коммуникационному порту
Ethernet, можно легко построить интеллектуальную тевую систему

3 Высокоскоростная работа

- Проиессор Cortex-А8 и тактовая частота 1 ГГц выбраны

5 Быстрое получение сигналов

- Стандартный 4 -канальный 200 КГц высокоскороотной счетчик - Управление на высокой скорости осуществляетяя с помощыю

Малогабаритные ПЛК

 xsdh-60A32-E

Компактные ПЛК XSLH-30A32

2 Несколько портов связи - Порты RS232, RS485, RJ45 реализуот широкие возможност связи. Они могут использоваться для подкпючения внешнего
оборудования, такого как частотный преобразователь и $т$.п.

4 Скоростное позиционирование - По умолчаниюо оснащен функцией управления позицониро-
ванием по 4 -м осям, а скорость может достиаать 100 кГц.

6 Высокая масштабируемость
может быть оснащен большим количеством модулеи
расширения ввода/вывода, модулями аналоговог расширения ввода/вывода, модулями аналоговог
ввода/вывода, а также модулями контроля температуры
 управле
-16 шт.

На платформе CODESYS значительно повышается эффективность программирования

Протокол связи CANbus

Быстрое подключение к сети, простая установка

 и высокая защита от помехCANbus - это полевая шина, широко используемая в промышленности. В настоящее время она является стандартом в широком диапазоне промышленных коммуннкацйй, таких как машиностроение, приводные системы и компоненты
медицинское оборудование, автоматизация зданий, транспорт и т.п.

Топология сети
 аиммодей вовать с модулями связи САаореn XD-COBOX-ED и XL овох-ЕD. Эти модули могут использоваться как в качестве ведущей

Спецификации шины

тип	Спецификация
Режим передачи	CAN
Электроизолячия	500 В постоянного тока (DC)
Кабель связи	Два коммуникационных пров да, один экранированный про вод и один провод заземлени
Тип передаваемой информации	PDO/SDO/SYNC/ Emergency / NMT
Последовательная передача скорости	10 кб/с~1 Мб/с
Дистанция связи	25m 5000 m Чем выше скорость пере ем короче должно быть расстояние

Основные преимущества

ысокая скорость передачи данных Достигает 1 Мб/с.

> Надёжность системы ХD-совох-ЕD/XL-COBOX-ED/XL5N-32T снащен наборыы перекпючателем опротивления клемм на 120 ОМ для
овышения надежности связи CAN устранения отр
развема CANbus.

Управление через EtherCAT

Больше узлов связи, значительно улучшены производительность и стабильность в реальном времени

Основные преимущества

Скорость и расстояние связи
Может быть использован специальный сетевой кабель Хіпје, максимальная ллина между узлами связи составляе 100 M . Самый 6 ыстрый цик. синхронизации составляет 500 мкс при синхронизации составляет 500 мкс при

Узлы связи
В систете управления через шину EthercАT поддерживается до 32 узлов cвязи

Масштабирование системь сканирование количества ведомых устройтв производится в один щелчок, адрес узла устанавивается
автоматически. После изменения узла
устрйствуу требеестя той устройству требуется только повторно
сканирование для корректировкй юооожения.

$$
\begin{gathered}
\text { Лёгкая установка и } \\
\text { изкая стоимость монта }
\end{gathered}
$$

низкая стоимость монтажа Благодаря простой линейной структуре
EthercaT, система управления EtherCAT не нуждается в кониентраторе
коммутаторе, проводка очень проста коммутаторе, проводка очень простая
стоимость установки низкая. Количество инженерны розработок и чертежей

 гарантирована.

Спецификация шины

оддерживается синхронное движение до 32 осей. По сравнению с традиционным шинным управлением, EtherCAT неет более короткий цикл управления, более высокую пропускную способность и более гибкую системную труктуру, что способно удовлетворить потребности в управлении большинства клиентов.

Типовая схема применения на базе шины EtherCAT
ии и стремением производителей к более эффективному производстввнному прочессу, шинная ехнология ЕtherСАТ получипа широкое прмименение в разли
иимическая промышленность, производство фотомодулей и др.

1 Машина для намотки статора

 ункияя эпектронного САм дпяя реапизаци мннооосевого движже

Высокая производительность в режиме реального времени компактная конструкция и разнообразие комбинаций

Устройство распределенного ввода/вывода по шине Xinje EthercАт имеет компактные габариты и комбинированную структуру, которая состоит из адаптера LC3-AP и модулей серии XL. Объединение в шинную сеть может быт
осуществлено для нескольких модулей с целью расширения точек ввода-вывода и количества аналоговых сигналов Благодаря многократным испытаниям на электромагнитную совместимость, оборудование безопасно и надежно.

LC3-AP адаптер

ЕtherCAT п можед therCAT и може ольшинством мастер-станций EtherCAT, таких как
TwinCAT и Codesys.

- Кодному адаптеру можно подклююить до 16 модулей серии XL, тоддержиающих до 512 сигнальных точе
Реализованы разлиныы
индикаторы состояния.
Применены безвинтовые клеммы, которые удобны и надежны.
- Конструкция портов Еthernet с накпоном 45 градусов снижает
механическую нагрузку и повышает надежность изделия.

Технические характеристики
(1) Основные характеристики

Характеристика	Значение
Окружающая среда	Без коррозийных газов
Номинальное напряжение	24 B постоянного тока
Диапазон напряжения	$21.6 \sim 26.4$ в постоянного тока
Выходное напряжение	120 мА 24 B постоянного тока
Допустимое мгновенное время отключения питания	10 mc 24 B постоянного тока
Пусковой ток	10 A 26.4 B постоянного тока
Рабочая температура	$0^{\circ} \mathrm{C} \sim 55^{\circ} \mathrm{C}$
Влажность	5-95\%
Установка	DIN- рейка 35 мм (DIN46277)

Характеристика	Значение
Заземление	Tретий вид (не общи оборуованием высооого тока)

Характеристика	значение
Протокол шины	EtherCAT
Тип интерфейса	Промышленный Ethernet
Тип подключения	2*RJ45

Помощь в подборе

(1) Адаптер серии L

Модель	Описание
LСЗ-АР	Адаптер связи с протоколом EtherCAT

Модель	Описание
XL-ETR	Терминальный резистор. Когда количество внешних модулей больше или равно 5, необходимо использовать терминальный резистор.
XL-P50-E	Внешний источник питания. Блок питания обеспечивает стабильную работу модуля в условиях низкого качества системы электропитанй Данный модуль является опциональным

(3) Модули серии X

Лёгкое создание промышленной интеллектуальной сети

В качестве основного компонента управления по сети Ethernet, Xinje выпускает модели с различной структурой
поддерживающие различные элементы управления, многоосевого позиционирования или управления движением. ОНиут бакже могут быть подключены напрямую промышленной сети для снижения стоимости создаваемой системы

Малогабаритные ПлК

Серия XD5E
Серия XDME
Серия XDH
Серия XSDH

Компактные Г

Серия XL5E
Серия XLME
Серия XLH
Серия XSLH

Среднеразмерные ПлК
Серия XG2
Серия $\times s 3$

1 Поддержка доступа к нескольким протокольным устройствам

3 Поддержка доступа к Xinje Cloud

- После того, как функция удаленной связи плк Ethernet включена
устройтво может быть добавлено в обпако Xinje Cloud для

2 Связь быстрее и эффективнее

В программном обеспечении плК серий XD/XG/XL можно есть возможность попучать болеее оочные данныее в реальном времени, а загрука программ происходит быстрее.
При этом, высокоскоростная и стабилнная сеть Etherne обеспеиивветт надежнуюю и высосоопроизводительную передачу

4 Гибкая топология сети

- Поддержка линейного извездообразного соединения,
высокая свобода установки.

Пищевое производство Фасовочное оборудование Упаковочное оборудование Многофункциональный робот

Полевая шина X-NET Протокол EtherCAT работает аналогично протоколу Ethernet, но при этом аправтирован для одновремения несколькими ведомыми устройствами. EtherCAT позволяет управлять системой из большего кол-ва устройств и имеет высокую пропускную способность. Вся линейка продукции XINJE имеет изделия с поддержкой	

Шина движения X-NET	modbus
Использование протокола CANopen Нозволяет быстро создават которые легко масштабировать CANopen используется в широком диапазоне промышленных отраслей акихкакмашиностроение подвижное оборудование ит.д.	Использование протокола Ethernet позволяет создавать распределенные системы управления Благодаря высокой скорости передачи данных и помехозащищенности Ethernet широко используется в с, промышленной автоматизации.

Общий контроль рабочих зон Весовое оборудование Оборудование для измельчения Удалённый мониторинг

Связь через EtherCAT	Связь по протоколу Canopen	Связь Ethernet
Протокол EtherCAT работает аналогично	Использование протокола СА	
протоколу Ethernet, но при этом	по	позволяет создавать распределенные
адаптирован для одновременного	помехозащищенные соединения, которые	системы управления
управления несколькими ведомыми	легко масштабировать. CANopen	
устройствами. EtherCAT позволяет	используется в широком диапазоне	Благодаря высокой скорости передачи
управлять системой из большего кол-ва	промышленных отраслей, таких как машиностроение, сельхозоборуоование,	данных и помехозащищенности Ethernet широко испольууется в системах
способность. Вся линейка продукции XINJE	транспортное, , подвижное оборудование	промышленной автоматиза।

Широкий выбор специальных функций

1 MSC Управление несколькими станциями
 - Получение эначения энкодера в соответствии с водным сигналом триггера, расчети сохранение значения входа и выхода каждой
станции, сравнение сохраненного значения каждой заготовки каждой станции с текущим значением энкодера и вывод результата.

\qquad

2 Блок функции языка C
Впервыев отрасли собирает функциональный модуль, он может вызвать е нобирает функциональный модуль, он может вызвать в
непосредственно там, где это необходимо, при этом внутреннсивенно оам, годе программы не виднно.

- Экономит внутреннее пространство, снижает рабочую программирования.
- Бопее широкие операцаионные возможности, включая
некоторые функции, поддерживаемые языко

некоторые функции, поддерживаемые языком С.

3 ШИМ Широтно-импульсная модуляция Широтно-импупьсная модупяция может быть реализована
командой Шим.
Точность деления ширины импульса может достигать

- ${ }^{\text {Tочность. }}$ 1/6535.

С помощью этой функции можно управлять

4 PID-регулирование

плпопподдержнивает инструкции PID-регулирования и обеспечивает функцию самонастройки, которая является более гибкой в использовании
При этом полпззватели могут самостоятельно устанавливать время выборки и значение параметра PID-регулятора путем
имеет два метода управления: метод ступенчатого отклика и метд крииических колебаний, которые применяются в большем

5 Точное время
Инструкция STR может реализовать точную синхронизациио
1 мс, а диапазон синхронизации составляет 1 - 132 . огд точшый ааймер достигает знуения таймина генерируется соответствующая метка прерывания, и может быть выполнена подпрограмма прерывания. Кажды̆ точный

7 Функция прерывания
ПЛК серии XD имеет функциюо прерывания. Некоторые спееиальные операциим моут быть реализованы путем
вызова прерывания, на которое не влияет цикл сканированй плк.
Прерывание включает 100 сегментов высокоскоростного счетного прерывания, 100 сегментов импульсного

6 SD-карта

SIK серий $\times 5$ (кроме 16 точек) и ХDM могут использовать
SD-карту дпя хранения данных и резеррнного копирования
 лот для карты.
SD-карта не поставляется заводом в комппекте с ПЛК
 MicroSD (TF Card), при этом емкость карты не должна

Высокоскоростной импульсный выход

Управление позиционированием
Транзисторный выход плк обычно имеет функцию высокоскоростного
имулпсного выхода на $2 \sim 10$ осей, а частота может достигать 100 КГц.

Управление движением
плК серий XDM, XDME, XLME, XDH, XG имеют функцию управпениа пвижением

Вход высокоскоростного счётчика плк обычно имеет 2~ 10 канапов высокоскоростных функций
счета, с одной фазой - до 80 кГци и фазой АВ - до 50 кГц. Он може быть напрямую соединен с поворотным энкодером для подсчет его входных данных.

Ллк серий XDH, XLH, XG2, XS3 с одной/АВ фазами може

XDPPro
Поддерживается в сериях XD/XL/XG
Простая в использовании функция настройки

1 Конфигурация модуля
 настроены напрямую.

3 Гибкая конфигурация импульсной функции

Инструкция PLSR объединяет несколько режимов

выбором параметров
Можно настроить 5 наборов различных пар
сделать поограммирование более удобны

5 Широкие возможности редактора
языка программирования
Поддержка лестничнни диаграммы и команд, между
которыми можно переключиттся в побое время в

- Встроенный функциональный бпок на языке Си, который
можно свободно импортировать и экспортировать.

2 Конфигурация последовательного порта
Поспедовательыые порты постоены сом1~СОм5 могут бы Можно также
нокно также настроить Modbus-RTU, Modbus-ASCI,

4 Комплексная панель функций для повышения возможностей программирования
Для инструкций с большим количеством данных и сложным параметрами, таких как: PID, последовательный
функциональный бпок, прерывание высокоскоростного счета функциональный бпок, прерывание высокоскоростного счета

- предусмотрена простая и удобная панель редактирования

6 Расчёт занимаемого программного пространства

14 Интерфейс настройки и программирования системы EtherCAT

Интуитивно понятная система мониторинга，
поддерживающая функцию осциллографа

Функция полной настройки и мониторинга осей
－Подробный информационный интерфейс，при помощи которого можно контролировать текущее движение
например，скорость，разлинные биты состояния и т．п．

Информационное окно конфигурации EtherCAT упрощает процесс программирования

－	
\％	
Eitaigeam	
まe：	
ºwasem	
\％．$=$ max	
Э \％\％9wa	＝
シ \％\％	

Среднеразмерные ПЛК

Улучшенные показатели скорости，мощности и функциональности
плК среднего размера серии XG，XS с более высокой скоростью обработки данных，повышенной мощностью функции управления движением，высокой надежностью икомпактной структурой．

Функциональные особенности

Обновлённый дизайн прагматичное пространства	Связь через порт Ethernet： удобная，быстрая，мощная и приспособляемая	Значительно увеличена скорость обработки процессором	Более высокая надежность	Большая ёмкость встроенной памяти
$\stackrel{1}{P}$		－	v	$\underbrace{\uparrow}$

Состав системы

7 Загрузка онлайн

- Попвзователи моут обновляьь программму онпайн бев нарушения
процесса рабооыы поорраммыl.
морампу онпайн бев нарушения

перееаппускать состемму не нухно.

9 Мультистраничный функционал - Пользователи могут сввбодно контропировать несколько
окон данных в зависимости от своих предппочтений.

8 Функция адаптации IP-адресов
щелчком мышии, изменяет соответтствующии й IP-адрес через сканированыий ІР и завершает связь с п ПК по связзи Еthernet.

10 Библиотека функций
-Сведение компонентов общих функций из нескольких проектов в один файл для справки. Компоненты библиоте

11 Форма редактирования функции формального параметра

- Широкй выбоо типов параметров и более удобная
обработтка данны।.

Добавленннтерфеис ввода-вывода функции с целью

12 Множество функций безопасности
добавлена расширенная функцияя сохранения. Можно выбрать, делать ли комментарии к программе конфиденци
альными. к тому же, используя фуккцико расширенног аохранения, можно сделать так, что функциоональный бпок С С не сможет загружаться без специального разрешения, ч
повышает конфиденциальность написанной программы.

может выбиирать списокк запрещенныых или разреешенныы ооет выбирать список запрещенных или разрешенн поделей

оптимизированная функция пароля позволяет не только интеппектууапьнойку собственности попьзователей, но добавить защиту паролем к заггуззе программ, чтоб
эффективно предотвратить поврежрение программ в ПКК

режиме скрытой загрузки программа плк не будет загруже-

13 Настройка интерфейса протокола CANopen - Информационное окно конфигурации протокола CANopen делает
программирование более удобным и быстрым.

Управление движением по EtherCAT

Серия XG2

Тип управления движением по EtherCAT среднеразмерного Плк
предоставпяет клиентам идеальное решение для управления
движением.
(1) 16 - 4 пр программнной ёмкости
(3) Махксниананыное импуличеный выход на 100 K Ги 4
(4) Базоваая инструкциия $0.005 \sim 0.01$ мкс
(5) Порты RS $232 \& R S 485$
(6) Линейная икруговая интерполяиия
() Связь через Ethernet
(9) Связь по протоколу EtherСат
(1) Поддержка дифференциальном действием (далее «follow up") (1) 3 -хосоеваая линфйнеая, кругговая инторопо (1) 16 -х осевая линейная, круговая ин

Параметры производительности

Серия продуктов XG2-		26 T 4
Вводы/выводы основного устройств	Макс. число точек	26
	Точки ввода	18
	Точки вывода	8
Макс. число точек ввода/вывода		1050
Высокоскоростное позиционирование	Нормальныймпуупссый вывод	4 осевой
	Дпфференииалынй ипп. вывод	-
$\begin{gathered} \hline \text { Высокоскоростной } \\ \text { вывод } \\ \hline \end{gathered}$	Одно/дуухфазный режим	4-x канальный, до 200 КГц
	Режим ввода	Дифференциальный
Возможность расширения	Правый модуль	16 шт.
	левый модуль	-
	BD-плата	-
Прерывание	Внешнее прерывание	12
	Прерывание по времени	20
	Другие прерызания	Прерывание высокоскоростного счёта, импульсное прерывание
Функции связи	Порты связи	1 RS232, 2 RS485, 2 RJ45
	Протоколы связи	Стандартный Modbus ASCIIRTU, свободный формат связи, Ethernet
Функцияшины		Управление через шину EtherCAT
Широтно-импульсная модуляция (Шим)		-
Измерение частоты		-
Точное время		-
Управление несколькими станциями		Поддерживается
Режим выполнения программы		Циклическое сканирование
Режим программирования		Инструкция, лестничная диаграмма, язык программирования «Си»
Сохранение при сбое питания		Память FlashROM
Средняя скорость обработки команд		$0.005 \sim 0.01$ мкс
Объём пользовательской программь (режим скрытой загрузки)		$16 \mathrm{M5}$
Защитные фу	нкции	6-битныйАSCII-пароль, скрытая загрузка

Список моделей серии XG2

Модель						
Для переменного тока				Для постоянного тока		
	Релейный	Транзисторнй виоо	Транзисторный и релейный смешанный вывод	Релейный	Транзисторный	Транзисторный и релейный смешанный вывод
NPN-тип					XG2-26T4	

[^0]
Новая высокопроизводительная модель

Серия XS3
С платформой программирования Codesys, эффективность программирования значительно повышается
Новые среднеразмерные ПЛК серии XS3 поддерживают спецификацию программирования PLCopen и могуттсылаться н многие стандартные библиотеки функццй для разработки
собственных функциональных блоков и библиотек инстру собственных функциональных блоков и библиотек инструкций. (1) Управпение скоростью через ЕtherСАТ
2) Поддержка удалённого ввода/вывода серез ЕtherCAT
(4) Связь по Etherne
(5) Загрузка онпайн

Технические характеристики

Список моделей серии XS3

Модель						
для переменного тока				Дпя постоянного тока		
	Релейный	Транзисторный	Транзисторный и релейный смешанный вывод	Релейный	Транзисторный	Транзисторный и релейный смешанный вывод
NPN-тип	-	-	-	-	XG3-26T4	-

Общая спецификация базового блока

Основные характеристики

Характеристика	Значение
Напряжение изоплиии	5on
Шумозащита	Шумовое напряжниие 1000Vp-p 1 мкс имп. 1 ми
Окр.среда	Без коррозийных и горючих газов
Рабочая температура	$0 \sim 60^{\circ} \mathrm{C}$
Влажность	5\% ~95\% (без конденсата)
установка	Можно закрепить с помощью винтов МЗ или непосредственно на рейку
Заземление (FG)	Третий вид (не с общим оборудованием высокого тока)

Характеристики источника питания

Характеристика	значение
Номинапьное напряжение	24 В постоянного тока
Допуустмый пиапазон напряжения	21.6 B-26.4 В постоянного то
Входной ток (только для базового блока)	120 мA 24 B постоянного тока
Допустимое время отключения питания	10 mc 24 B постоянного тока
Пусковой ток	10 A 26.4 В постоянного тока
Максумапно оотреблееая мощНость	12 BT
Питание датчика	$24 \pm 10 \%$ B постоянного тока

Характеристики входов

Характеристики входов ПЛк серии XG2/XS
лЛК серии XG2/XS3 поддерживают режим ввода NPN и дифференциального сигнала

Характеристики режима NPN				
Характеристика				

Характеристики выходов

Внешний истонник питания		Не более 5~30 В постоянного то
изоляция цепи		Оптопара
Индикатор активности		Светодиод
Максимальная нагрузка	Резистивная	0.3 A
	Индуктивная	$7.2 \mathrm{~B} / 24 \mathrm{~B}$ постоянного тока
	Лёrкая	1.5 B /24 24 постоянного тока
Минимальная нагрузка		2 MA 5B постоянного тока
Токутечкив разомкнуто̆ цепи		Менее 0.01 mA
Время отклика	При включении	Менее 0.2 мс
	При выключении	Менее 0.2 mc

Характеристика	Значение
Напряжение сигнала	$5 \pm 10 \%$ В постоянного тока
Ток сигнала	$12 \mathrm{~mA} / 5 \mathrm{~B}$ постоянного тока
Токвключения	Выше 4.5 mA
Токвыкпючения	Ниже 1.5 mA
Возможности отклика	До $200 \mathrm{~K} \mathrm{\Gamma 4}$
Формат сигнала	Дифференциальный ввод ($\mathrm{X0}, \mathrm{X} 1, \times 3$, $\mathrm{x} 4, \mathrm{x} 6, \mathrm{x} 7, \mathrm{x} 11, \mathrm{x} 12$)
изолячия цепи	Oптопара
Отображение	Светодиод горит, когда вход активен

ысокоскоростной импульсный выход

Высокоскоростной имп.вывод Үо~Үз

Внешний источник тока Не более 5-30 В постоянного тока Индикатор активности Светодиод | Максимальный ток | 50 mA |
| :--- | :--- |
| Макс. частота пмпупьса | |

Макс. частота импупьса 100 КГц

Модуль расширения

Ксреднеразмерным ПлК XG, XS3 можно подкпючать от 1 до 16 модупей расширения разпичных типов имоненей.

Основные характеристики

Характеристика	Значение
Окружающая среда	Без коррозийных газов
Рабочая температура	$0 \sim 60^{\circ} \mathrm{C}$
Температурахраннения	$-20 \sim 70^{\circ} \mathrm{C}$
Рабочая влажность	5~95\%
Влажность хранения	5~95\%
установка	Непосредственно устанавливается на направляющую шину модели XG-EB-Длина (мм)
Габариты	$130.0 \mathrm{~mm} \times 40.0 \mathrm{~mm} \times 133.4 \mathrm{~mm}$

Серия XG, модуль расширения ввода/вывода

Если количество точек ввода/вывода основного устройства не соответствует задачам, можно использовать модуль расширения ввода/вывода.

Модель	Функционал	Характеристика
XG-E16X	16 каналов цифрового ввода	Совместим с NPN\&PNP входами Модуль не нуждается во внешнем источнике питания Время входного фильтра $1 \sim 50 \mathrm{~ms}$ опционально Способ подключения: 16 X и 32 X имеют клеммную колодку 64 X нуждается во внешней клеммной колодке Способ подключения клемм: такой же, как у ПЛК
XG-E32X	32 канала цифрового ввода	
xG-E64x	64 канала цифрового ввода	

Серия XG, аналоговый модуль расширения
(1) Благодаря модулю аналоговых (2) добавлением функци PID модуль,
вводов/выводов
 применятьья в системах управления высокую точность регулирования. такмми процессами, какконтроль
температуры, расход уровня жидкости и давление.

Модель	Число ханапов	Входной сигнал	Характеристики
XG-E8AD-A-S	8	Входной ток: 0-20mA/4-20mAl/-20-20mA	Источник питания: $\mathrm{DC} 24 \mathrm{~V} \pm 10 \%, 150 \mathrm{~mA}$ Скорость преобразования: 2мс/канал Разрешение: $1 / 65535$ (16 -bit) Комплексная точность $\pm 1 \%$
xG-E8AD-V-S	8	Входное напряжение: 0~5V/0~10V/-5~5V/ -10~10V	Коэффициент фильтра АЦП 0~254 Канал АЦП имеет функции обнаружения короткого замыкания, обрыва цепи и превышения диапазона

Модуль смешанного аналогового ввода/вывода (тип nADmDA)

Модуль расширения системы управления температурой

Модель	Чиело каналов	Входной сигнал	Характеристика
XG-E8PT3-P	8	Pt100 платиновый термистор (трёхпроводная система с компенсацией) Диапазон измерения температуры -100° С $\sim 500^{\circ} \mathrm{C}$ (цифровой диапазнн: $-1000 \sim 5000$, 16 bit со знаком, двоинный)	Источникпитания Разрешение $0.1^{\circ} \mathrm{C}$ комплексная точность $\pm 1 \%$ значения)
XG-E8TC-P	8	K, S, E, N, B, T, JиR типы термопары Диапазон измерения температуры: $0^{\circ} \mathrm{C} \sim 1300^{\circ} \mathrm{C}$ (цифровой диапазон: $0 \sim 13000,16$-bit со знаком, двоииный) двоичный)	Коэффициент фильтра PT: 8 групп независимых пидпараметров с поадержкко фуккции самонастройки

Аксессуары

Специальный блок питания XG-P75-E
Спечиальны̆ бпок питания XG обеспечивает стабильную и надё-
жную работу системы электропитания плК, что позволяет продлить срок службыы контроллера.

Характеристика	Значение
Номиналыное напряжение	AC100V 240 V
Допустимое напряжение	AC90V-265V
Номинальная частота	$50 \mathrm{~Hz} \sim 60 \mathrm{~Hz}$
Допустимое время оплюючения питания	Interruption timeso. 5 AC cycle, interval21s
Пусковой ток	Макс. 40A менее 5ms/AC100V
	Макс. 60A meнee 5ms/AC200V
Максимально потребляемая мощность	75W

Внешняя клеммная колодка

Модулям XG2-26T4, XS3-26T4, XG-E64X, XG-E64YT требуетсяя внешня клеммная колодка. Ни.
подключчения модуля.

Модель	Тип клеммной колодки	Модель кабеля
XG2-26T4	JT-G26	JC-TG26-NN05 (0.5m) JC-TG26NN10 (1.0 m) JC-TG26-NN15 (1.5m
XS3-26T4		
xG-E64x	JT-E32X	JC-TE32-NN05 (0.5m) JC-TE32NN10 (1.0m) JC-TE32-NN15$(1.5 \mathrm{~m})$
XG-E64YT	JT-E32YT	

U-образный разъём ХG-EUC-1/XG-EUCT-1

U -обрааный рааьем исполььуется для присоединения к среднеразмерном
пЛК модупей расширения.
Основанный на разъёме типа XG-EUC-1 разъём с встроенным концевым резистором вставляется в порт последнего модуля расширения для улучшения качества сигнал

Аксессуары сетевого порта базового блока

Название	Модель	Описание	картинка
Кабель связи и программирования	JC-EL-Length	Кабель XVP применим только к ПЛК серий XG2 и XS3 Доступны три размера: JC-EL-25 (2,5 м), JC-EL-50 (5 м), JC-EL-100 (10 м).	
USB переходник	Usb-Com	Для преобразования интерфейса порта DB9 (мама) в порт USB	
USB кабель печати	Jc-UA-15	Специальный USB-кабель для продукции Xinje, черный, с двойными ферритовыми кольцами для повышения защиты от помех	
Кабель EtherCAT	JC-CB-Length	Кабель шины EtherCAT, для второго порта Ethernet ПЛК серий XG2, XS3, XDH, XLH. Доступно девять разновидностей: JC-CB-OP1 (0.1 m), JC-CB-OP2 $(0.2 \mathrm{~m})$, JC-CB-OP3 (0.3 m), JC-CB-OP5 $(0.5 \mathrm{~m})$, JC-CB-1 (1m), JC-CB-3 (3m), JC-CB-5 (5m), JC-CB-10 (10m), JC-CB-20 (20m)	

Монтажные платы XG-EBSeries
Для установки ПлК, модуля расширения и модуля питания
выбирается направляющая серии $X G$-ЕВ.
доступны шесть разновидностей:
XG-EB-170 (170mm), XG-EB-260 (260 mm) X-EB-880 (880 mm) XG-EB-1500 (1500 mm)

Размеры: (ед: mm

Модуль расширения

Модуль расширения

Соответствующие модели
Тип
Цифровая

Малогабарит н Не ПП Малогабаритные плк сөрии XD Высокое быстродействие, стабильные харктеристики и расширенный функционал

10 Подсерий для Удовлетворения Большинства Потребностей

Широкий спектр применения Удовлетворение Разнообразных Потребностей

Высокоскоростное получение сигналов От 3 до 10 каналов считывания высокой скорости Испопьзуя разпичные счетчики, плК может считать в однофазном инкрементном режиме 80 кГ в режиме AB-фазыы (двойнная и четырерхккратная стота по выбору, а максимальная частота можы остигать 50 кГЦ) и дифференциальном режиме
(максимальная частота может достигать 200 кГц). правление высоккй скоростыо осуществляетсяя
омощью простой команды высокоскоростного счета

Высокая способность красширению
Базовые блоки плк серии ХD могут быть оснащен
 Температуры, платой вD и левым модулем расширения,
то позволяет легко реализовать аналоговое управли, биения Обыен данными между модупем расширенияи иазовы"
блоком был изменен с перввнананьнного режима связи параллельного порта серии XC на режим связи

Бюджетная серия

Серия XD1
Относительно простой функционал. ПЛК может выполнять логическое управление, работу с данными и другие общие
функции. Не поддерживает правый модуль расширения, левый функции. . Не поддерживает правый модуль расширения, левый
модуль расширения ЕD и плату расширения BD .
(1) Объём встроенной памяти 256 KB
(2) Последовательное управление вводом/выводо
(3) Максимум 32 точки ввода/вывода
(4) Базовые команды $0.02 \sim 0.05$ мкс
5) RS232, RS485
(6) Попевая шина X-NET

Перечень моделей серии XD1

Модель						
Питание переменным током				Питание постоянным током		
	Релейный выход	Траннисторыый	Смешанный транзисторнорелейный выход	Релейный выход	Траннисторный выхоо	Смешанный транзисторнорелейный выход
Tип NPN	XD1-10R-E	XD1-10T-E	-	XD1-10R-C	XD1-10T-C	-
	XD1-16R-E	XD1-16T-E	-	XD1-16R-C	-	-
	XD1-24R-E	XD1-24T-E	-	XD1-24R-C	-	-
	XD1-32R-E	XD1-32T-E	-	XD1-32R-C	XD1-32T-C	-
Tип PNP	XD1-16PR-E	-	-	-	-	-

[^1]
Технические характеристики

родукт серии XD1-		10RT	16RT	24RT	32RT
Вводы/выводы основного блока	Всего точек	10	16	24	32
	Точек ввода	5	8	12	16
	Точек вывода	5	8	12	16
Максимальное количество точек		10	16	24	32
Высокоскоростное позиционирование	Общие импульсныө выходы	-	-	-	-
	Дифференциальные	-	-	-	-
Bысокоскоростнойвход	Одна фаза/АВ фазы	-	-	-	-
	Режим ввода	-	-	-	-
Возможности расширения	Правый модуль	-	-	-	-
	Левый модупь	-	-	-	-
	BD-плата	-	-	-	-
Прерывание	Внешнее прерывание	3	6	10	10
	Прерывание по времени	20	20	20	20
	другие прерывания	-	-	-	-
Функции связи	Порты связи	2 портa RS232	2 портa RS232	2 RS232 порта, 1 RS485 порт	2 RS232 порта, 1 RS485 порт
	Протоколы связи	Стандартно - Modbus ASCIIRTU, свободный формат сяязи			
Функция шины		Полевой X -NET			
Широтн-импульсная модупяция (Шим)					
Измерение частоты		-			
Точное время		26 точки ET0~ЕT26 (Только чётные чиспа)			
Управление несколькими станциями		-			
Рехим выпопнения программы		Режим циклического сканирования			
Метод программирования		Инструкция, лестиичная диаграмма, язык программирования Си			
Хранение данных без внешнего питания		Применяется FlashROM с литиевой батарейкой (таблетка 3V)			
Скорость обработкк базовых команд		$0.02 \sim 0.05 \mathrm{nkc}$			
Объём встроенной памяти (скрытая загрузка)		256 KB			

Продуты серии XD1-			10RT	16RT	24RT	32RT
Функция защиты			6-битное шифрование пароля ASCII, окрытая эаггуэка			
Функция самодиагностики			Самодиагнностиа при вклочении, таймер мониторинга, проверка синтаксиса			
Часы реального времени			Встроенные часы, литиевая батарейка, независимая память			
Внешняя SD-карта			896 точeк: X0 - X77, X10000 X11177, X20000- $201777, \times 30000 \sim \times 30077$			
Bxoghoe pene (X)						
Выходное реле (Y)			896 точек	00-Y11	0177, Y	
	Вспомогательное реле	Основное М	8000 точек M0-M7999			
		При выключченном питании HM	960 точek HMO-HM959			
		Спечиальное SM	2048 точек SM0-SM2047			
	Поток	Основной S	1024 то4eк SO-S1023			
		При выккпчченном питании НS	128 точек HSO-HS127			
	Таймер	Характеристика	Taймер с warom 100ms: 0.1 -3276.7s, $10 \mathrm{~ms}: 0.01-327.67 \mathrm{~s}$, 1ms: 0.001 -32.767s			
		Основной T	576 точек T0~T575			
		При выккююченном питании НТ	96 точек НТо-НТ95			
	Подсиёт	Характеристика	16-bit счётчик: 0~32767 32-bit счётчик: -2147483648~+2147483647			
		Основной С	576 точек CO - C 575			
		При выкпюченнном питании Нс	96 точек HCO-HC95			
	Специальная катушка дпя инструккиии WAIT		32 точек SEM0-SEM31			
	Регистр данных	Основной D	8000 точeк DO-D7999			
		При выкпюченном питании HD	1000 точeк HDO~HD999			
		Специальный SD	2048 Toyek SDO-SD2047			
	Peructp FlashROM	При выкпююченном питании FD	5120 точek FD0~FD5119			
		Спеецалпный SFD	2000 точек SFDD SFD1999			
		Защицённый FS	48 тoyee FSO~FS47			

Упрощённый тип

Серия XD2
Полноценный функционал．В дополнение к основной функции обработки данных，он также имеет специальные функции，
такие как импульсный выход，высокоскоростной счет，широтно－ такие как импульсный выход，высокоскоростной счет，широтно－ поддерживает левые модули ED и BD（кроме 16 точек），но не
поддерживает правый модуль расширения，что позволяет поддерживает правый модуль расширения，что позволяя
уоовлетворить только основные потребности пользователей．
（1）Объём встроенной памяти 256 KB
（2）Последовательное управление вводом－выводом
（3）Максимум 60 точек ввода／вывода
（4）Базовые команды $0.02 \sim 0.05$ мкс
（5）RS 232, RS 485
6）Полевая шина X－NET
хыхода 100 KHz
（8） 3 входа высокоскоростного счётчика（одна фаза－80 KHz，AB фазы－до 50 KHz ）

Перечень моделей серии XD2

Модель						
Питание переменным током				Питание постоянным током		
	Релейный	Транзисторный выход	Смешанный транзисторно－ релейный выход	Релейный выход	Tранзисторный выхоо	Смешанный транзисторно－ релейный выход
Tип NPN	XD2－16R－E	XD2－16T－E	－	XD2－16R－C	XD2－16T－C	－
	XD2－24R－E	XD2－24T－E	XD2－24RT－E	XD2－24R－C	XD2－24T－C	XD2－24RT－C
	XD2－32R－E	XD2－32T－E	XD2－32RT－E	XD2－32R－C	XD2－32T－C	XD2－32RT－C
	XD2－42R－E	XD2－42T－E	－	－	－	－
	XD2－48R－E	XD2－48T－E	XD2－48RT－E	XD2－48R－C	XD2－48T－C	XD2－48RT－C
	XD2－60R－E	XD2－60T－E	XD2－60RT－E	XD2－60R－C	XD2－60T－C	XD2－60RT－C
 Tип PNP	－			XD2－32PR－C		

Технические характеристики

Продукты серии XD2－			16R／T	24R／T／RT	32RTTRT	42R／T	48RTTRT	60R／T／RT
Функиия защиты			6－битное шифрование ASCII паропя，скрытая загрузка					
Функция самодиагностики			Самодиатностика при вклочении，таймер мониторинга，проверка синтакси					
Часы реального времени			Встроенные часы，питание от литиевой батареи，с памятью при отключении питания					
Внешняя SD－карта								
	Входное реле（ X ）		896 тoبek：X0～×77，X10000－x11177，X20000～X20177，＜30000－X30077					
	Выходное реле（ ）		896 точer：Y0～Y77，Y10000～Y11177，Y20000～Y20177，Y30000～Y30077					
	Вспомогатель－ ное реле	Основное М	8000 точек M0－M7999					
		При выккпоченном	960 точeк HMO－HM959					
		Специальное SM	2048 точек SMO～SM2047					
	Поток	Основной S	1024 точек SO～S1023					
		При выключенном питании HS	128 тoчek HSO－HS 127					
	Таймер	Характеристика	Таймер с шагом $100 \mathrm{~ms}: 0.1 \sim 3276.7 \mathrm{~s}$ ，таймер с шагом $10 \mathrm{~ms}: 0.01 \sim 327.67 \mathrm{~s}$ ，таймер с шагом $1 \mathrm{~ms}: 0.001 \sim 32.767 \mathrm{~s}$					
		Основной Т	576 точeк T0～～575					
		При выкпюченном питании НТ	96 точек НTO－HT95					
	Подсчёт	Характеристика	16－bit счетчик：0～32767 32－bit счетчик：－2147483648～＋2147483647					
		Основной С	576 точeк CO～C575					
		При выккпоченном питании НС	96 точек HCO－HC95					
	Специальная катушка для инструкции WAIT		32 точки SEMO～SEM31					
	Регистр данных	Основной D	8000 точeк DO～D7999					
		При выккююченном питании HD	1000 точек HDO～HD999					
		Специальный SD	2048 точек SDO－SD2047					
	Регистр FlashROM	При выключенном питании FD	5120 точек FDO～FD5119					
		Специальный SFD	2000 точек SFDO～SFD1999					
		Защищённый FS	48 точek FSO－FS47					

[^2]Серия XD3
Полный функционал. В дополнение к основной функциям обработки данных, ПЛк также имеет специальные функции,
такие как импульсный выход, высокоскоростной подсчет такие как импульсный выход, высокоскоростной подсчет,
широтно-импульсая модуляиия, измерение часттты и так далее. Он поддерживает левый модуль расширения $E D$ модуль расширения BD (кроме 16 точек) и правый модуль расширения,
(1) Обьём встроенной памяти 256 KB
(2) Последовательное управление вводом-выводом
(3) Максимум 380 точек ввода/вывода
(4) Базовые команды $0.02 \sim 0.05$ мкс
5) RS232, RS485
(6) Полевая шина X-NET

(8) 3 входа высокоскоростного счётчика (одна фаза - 80 KHz АВ Ав фавят 20 KHz) (9) USB-порт высокоскоростной загрузки данных (макс. 12Mbps)

Технические характеристики

Перечень моделей серии XD3

Модель						
Питание переменным током				Питание постоянным током		
	Релейный выход	Транзисторный выход	Смешанный транзисторнорелейный выход	Релейный	Транзисторный выход	Смешанный транзисторнорелейный выход
Tип NPN	XD3-16R-E	XD3-16T-E	XD3-16RT-E	XD3-16R-C	XD3-16T-C	XD3-16RT-C
	XD3-24R-E	XD3-24T-E	XD3-24RT-E	XD3-24R-C	XD3-24T-C	XD3-24RT-C
	-	XD3-24T4-E		-	XD3-24T4-C	
	XD3-32R-E	XD3-32T-E	XD3-32RT-E	XDJ-32R-C	XDJ-32T-C	XD3-32RT-C
	-	XD3-32T4-E		-		
	XD3-48R-E	XD3-48T-E	XD3-48RT-E	XD3-48R-C	XD3-48T-C	XD3-48RT-C
	XD3-60R-E	XD3-60T-E	XD3-60RT-E	XD3-60R-C	XD3-60T-C	XD3-60RT-C
Tип PNP	XD3-16PR-E	XD3-16PT-E		XD3-16PR-C	XD3-16PT-C	XD3-16PRT-C
	XD3-24PR-E	хD3-24PT-E	XD3-24PRT-E	XD3-24PR-C	хD3-24PT-C	XD3-24PRT-C
	XD3-32PR-E	xD3-32PT-E	XD3-32PRT-E	XD3-32PR-C	хD3-32PT-C	XD3-32PRT-C
	XD3-48PR-E	xD3-48PT-E	XD3-48PRT-E	XD3-48PR-C	хD3-48PT-C	XD3-48PRT-C
	XD3-60PR-E	XD3-60PT-E	XD3-60PRT-E	XD3-60PR-C	XD3-60РT-C	XD3-60PRT

Продукты серии хDз-			16RT/RT	24RTTRT	2474	32RTTRT	32 T	48RTTRT	60RTTRT
Функция защиты			6-битное шифроввание ASCII пароля, скрытая эагруза						
Функция самодиагностики			Самодианностика при включении, таймер мониторинга, проверка синтаксиса						
Часы реального времени			Встроенные часы, питание от литиевой батареи, с памятью при откпючении питания						
Внешняя SD-карта			896 точer: X0 X $77, \times 10000 \sim \times 11177, \times 20000 \sim \times 20177, \times 30000 \sim \times 30077$						
주	Входное реле (X)								
	Выходное реле (${ }^{\text {) }}$		896 точек: XO~X77,X10000~1117, $890000 \sim \times 20177, \times 30000 \sim \times 30077$						
	Вспомогатель- hoe pene	Основное M	8000 точек М0-M7999						
		При выключенном питании HM	960 точек HMO-HM959						
		Специапьное SM	2048 точeк SMO~SM2047						
	Поток	Основной S	1024 точки S0~S 1023						
		При выключенном питании HS	128 To4er HSO~HS 127						
	Таймер	Характеристика	Таймер с шагом $100 \mathrm{~ms}: 0.1 \sim 3276.7 \mathrm{~s}$,таймер с шагом $10 \mathrm{~ms}: 0.01 \sim 327.67 \mathrm{~s}$,таймер с шагом $1 \mathrm{~ms}: 0.001 \sim 32.767 \mathrm{~s}$						
		Основной Т	576 точек T0~T575						
		При выключенном питании HT	96 точек HTO-HT95						
	Подсиёт	Характеристика	16-bit счетчик: $0 \sim 32767$32-bit счетчик: $-2147483648 \sim+2147483647$						
		Основной С	576 точек C0-C575						
		При выключенном питании HC	96 точек HCO~HC95						
	Специальная катушка для инструкции WAIT		32 Tочки SEMO~SEM31						
			8000 точек DO~D7999						
	Регистр данных	При выкппчченном	1000 точек HDO-HD999						
		Спеециальный SD	2048 точек SDO~SD2047						
	Регистр FlashROM	При выккпюченном питании FD	5120 точек FDO FD5119						
		Специальный SFD							
		Защищёныы FS							

[^3]
Улучшенный тип

Серия XD5
В дополнение ко всем функциям стандартного Плк, он имеет более высокую скорость обработки сигналов (примерно в 15 раз выше,
чем у серии XC), большой объём встроенной памяти и от 2 до 10 чем у серии хС), большой объём встроенной памяти и от 2 до 10
выокосоростых импульных выходов. Поддерживает подключение ппавого модуля расширения, ппаты расширения BD (кроме 16 точек) и левого модуля расшрения
подлерживает внешнюю а а тарту (кроме 16 точек)
(1) Объём встроенной памяти 512 KB
(2) Последовательное управление вводом-выводом
(3) Максимум 592 точки ввода/вывода
(4) Базовые команды $0.02 \sim 0.05$ мкс
5) RS232, RS 485
(1) $2 \sim 10$ импульсных выхода по 100 KHz
(8) $3 \sim 10$ входов высокоскоростного счётчика (одна фаза - 80 KHz , AB фазы- 50 KHz)
(9) USB-порт высокоскоростной загрузки данных (макс. 12Mbps)

Технические характеристики

Продукты серии XD5-		16	24	2474	32	32T4	42	48	4874	4876	60	6074	60т6	60710	80
Вводы/выводы основного блока	Всего точек	16	24	24	32	32	42	48	48	48	60	60	60	60	80
	Точек ввода	8	14	14	18	18	24	28	28	28	36	36	36	36	40
	Точек вывода	8	10	10	14	14	18	20	20	20	24	24	24	24	40
Максимальное количество точек		528	536	536	544	544	554	560	560	560	572	572	572	572	592
Высокоскоростное позиционирование	Общие импульсные выходы	2 оси	2 ocn	4 ocn	2 ocn	40 ch	2 ocn	2 оси	4 оси	6 ocn	2 ocn	4 ocn	6 оси	10 con	200
	Дифференциальные		.	.	-	.	.		.	-	-	-	.	.	
Высокоскоростной ВХОД	Одна фаза/AB фазы	$\underset{\text { каналала }}{3}$	канала	канала	канала	канала	канала	занала	канала!	$\begin{array}{\|c\|} \hline 6 \\ \text { канала } \end{array}$	канала	${ }^{4}$	${ }^{6}$	10	$\stackrel{3}{3}$
	Режим ввода	OC	O	OC	O	Oc	OC	oc							
ВозМожности расширения	Правый модупь	16	16	16	16	16	16	16	16	16	16	16	16	16	16
	Левый модупь	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	BD-плата	\cdot	1	1	1	1	1	2	2	2	2	2	2	2	2
Прерывание	Внешнее прерывание	6	10	10	10	10	10	10	10	10	10	10	10	10	10
	$\begin{aligned} & \begin{array}{l} \text { Прерыванние по } \\ \text { времени } \end{array} \\ & \hline \end{aligned}$	20													
	другие прерывания	Высокоскоростное прерывание, импупьсное прерывание													
Функции связи	Порты связи	1 порт RS232,1 порт RS485,1 порт USB													
	Протоколы связи	Стандартно-Modbus ASCIIRTU свободный формат связи													
Функция шины															
Широтно-импульсная модупяция (ШИМ)															
Измерение частоты		Поддерживает													
Точное время		26 точек ЕТО-ЕT25(можно испопьзовать только четные чиспа)													
Управление несколькими станциями		Поддерживает													
Режим выполнения программы		Режим циклического сканирования													
Метод программирования		Инструкция, лестничная диаграмма, язык программирования Си													
Хранение данных без внешнего питания		Применяется FlashROM с литиевой батарейкой (табпета З ЗV)													
Скорость обрраотки базовых команд		$0.02 \sim 0.05 \mathrm{nkc}$													
Обьём встроенной памяти(скрытая загууза)		512KB													

Объём встроенной памяти(скрытая загрузаа)	512 KB

Модель							
питание переменным током				Питание постоянным током			
	Рееейный выход	$\begin{gathered} \text { Транзисторный } \\ \text { выход } \end{gathered}$	Смешанный транзисторно-	$\begin{gathered} \text { Репейный } \\ \text { выходд } \\ \hline \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { Tранззсторный } \\ \text { выхоо } \end{array} \\ \hline \end{gathered}$	Смешанный траниисторно	
Tип NPN	XD5-16R-E	XDS-16T-E	XD5-16RT-E	XD5-16R-C	XDS-16T-C	XD5-16RT-C	
	XD5-24R-E	XDS-24T-E	XD5-24RT-E	XD5-24R-C	XDS-24T-C	XD5-24RT-C	
	-	XD5-24T4-E			XD5-24T4-C		
	XD5-32R-E	XD5-32T-E	XD5-32RT-E	XD5-32R-C	XD5-32T-C	XD5-32RT-C	
	-	XD5-32T4-E	-	-	XD5-32T4-C	-	
	XD5-42R-E	XD5-42T-E	-	-	-	-	
	XD5-48R-E	XD5-48T-E	XD5-48RT-E	XD5-48R-C	XD5-48T-C	XD5-48RT-C	
	-	XD5-48T4-E	-	-	XD5-48T4-C	-	
	-	XD5-48T6-E	-		xD5-48T6-C		
	XD5-60R-E	XD5-60T-E	XD5-60RT-E	XD5-60R-C	XD5-60T-C	XD5-60RT-C	
	-	XD5-60T4E	-	-	XD5-60T4-C	-	
	-	XD5-60T6-E	-	-	XD5-60T6-C	-	
	-	XD5-60T10-E	-	-	XD5-60T10-C	-	
	-	XD5-80T-E	-	-	XD5-80T-C	-	
Tип PNP	XDS-24PR-E	XDS-24PT-E	XD5-24PRT-E	XD5-24PR-C	XD5-24PT-C	XD5-24PRT-C	
	-	XD5-24PT4-E	-	-	-	-	
	XD5-32PR-E	XD5-32PT-E	XD5-32PRT-E	-	XD5-32PT-C	XD5-32PRT-C	
	-	-	-	-	XD5-32PT4-C	-	
	-	-	XD5-48PRT-E	-	-	-	
	-	XD5-48PT6-E	-	-	XD5-48PT6-C	-	
	XDS-60PR-E	-	-	-	XD5-60PT-C	-	
	-	-	-	-	XD5-60PT6-C	-	
Продукт серии хD5-			6-битное шифрование ASCII пароля, скрытая загрузка				
Функция защиты							
Функция самодиагностики							
Часы реального времени Внешняя SD-карта			Встроенные часы, питание от литиевой батареи, с памятыю отключения питания				
			Поддерживает (кроме 16 точек)				
$\underset{\gtrless}{\text { 중 }}$	Входное реле (X)		1280 точек: X0-X77, X10000-X11777,X20000-X20177,X30000-X30077				
	Выходное реле (${ }^{\text {(}}$		1280 точек: Y0~Y77,Y10000~Y11777,Y20000~Y20177,Y30000~Y30077				
	Вспомогательноереле						
		Cпециаппноe SM	5000 точек: SMO-SM4999				
	поток	Ochoвной	8000 тoчer: S0-S7999				
		При выключенном питании HS	1000 точе: : HSO-HS999				
	таймер	характеристика	Таймер с шагом $100 \mathrm{~ms}: 0.1 \sim 3276.7 \mathrm{~s}$,таймер с шагом $10 \mathrm{~ms}: 0.01 \sim 327.67 \mathrm{~s}$,таймер с шагом 1 ms : $0.001 \sim 32.767 \mathrm{~s}$				
		Основной	5000 точek: T0~T4999				
		При выключенном питании НТ	2000 точек: НTO-HT1999				
	Подсиет	Характеристика	16-bit счетчик: $0 \sim 32767$32-bit счетчик:$-2147483648 \sim+2147483647$				
		Основной С	5000 точer: C0-C4999				
		Пор вıйоченно	2000 точек: HCO-HC1999				
			32 точки: SEMO-SEM31				
	Регитр данных	Осиввной D	$\begin{aligned} & 70000 \text { точек: D0~D69999 } \\ & 25000 \text { точек: } \mathrm{HDO} \text { HD24999 } \end{aligned}$				
		Cпециапыный SD	5000 точeк: SDO-SD4999				
	$\underset{\substack{\text { Perucrp } \\ \text { Flashrom }}}{ }$		8192 точek: FDO~FD8191				
		СпециагпыЫй SFD	6000 точек: SFDO-SFD5999				
		зациценныї FS					

[^4]
Дифференциальный тип

Серия XD5-xDnTm
Высокоскоростной дифференциальный ПЛК серии XD5
разработан в соответствии с потребностью быстрого разработан в соответствии с потребностью быстрого
взаимодействия с серводвигателем. Он не требует схемы преобразования, удобен в подключении и оснащен всеми
функциями улучшенного плк.
(1) Объём встроенной памяти 512 KB
(2) Последовательное управление вводом-выводом
3) Максимум 560 точек ввода/вывод
(5) RS232, RS485
(6) Полевая шина X-NET
(7) 4 высокоскоростных дифференциальных импупьсных выхода по 920 KHz (8) 4 входа дифференциального сверхккоростного счётчика по 1 MHz каждый (9) USB-порт высокоскоростной загрузки данных (макс. 12Mbps)

Технические характеристики

Продукты серии хD5-		24 D	474
Вводы/выводы основного блока	Всего точек	24	48
	Точек ввода	14	28
	Точек вывода	10	20
Маккимальное количество точек		536	560
Высокоскоростное позиционирование	Общие импульсные выходы	20 ch	40 ch
	Дифференциальные	2 ocn	4 оси
Высокоскоростной ВХОД	Одна фаза/АВ фазы	2 канала	4 канала
	Режим ввода	2 канала	4 канала
Возможности расширения	Правый модуль	16	16
	Левый модуль	1	1
	BD-ппата	1	2
Прерывание	Внешнее прерывание	10	
	Прерывание по времени	20	
	Другие прерывания	Высокоскоростное прерь	
Функции связи	Порты связи	1 порт RS232,1 порт RS4	
	Протоколы связи	Стандартно - ModbusAS	
Функция шины		Полевой X-NET	
Широтно-импульсная модупяция (ШИМ)		Поддерживает	
Измерение частоты		Поддерживает	
Точное время		26 точе ETO~ET25 (M0*	
Управление несколькими станциями		Поддерживает	
Режим выпооннения программы		Режим циклического скап	
Метод программирования		Инструкция, пестничная	
Хранение данных без внешнего питания		Применяетоя FlashROM	
Скорость обработки базовых команд		$0.02 \sim 0.05$ мкс	
Объём встроенной памяти(скрытая загрузка)		512 KB	

Перечень моделей дифференциальных ПлК серии XD5

модель						
Питание переменным током				Питание постоянным током		
	Релейный	$\begin{array}{\|l\|l\|} \hline \end{array}$	Смешанный транзисторно релейный выход	Релейный выход	Транзисторный выход	Смешанный транзисторнорелейный выход
Tип NPN	-	XD5-24D2T2-E	-	-	-	-
	-	XD5-48D4T4-E	.	.	.	

Продукы серии XD5-			24D2T2	48D4T4
Функция защиты			6-битное шифрование ASCII пароля, скрытая загруза	
Функция самодиагностики			Самодиагностика при вклочении, таймер мониторинга, проверка синтаксиса	
Часы реального времени			Встроенные часы, питание от литиевой батареи, с памятью отключения питания	
Внешняя SD-карта			Поддерживает	
	Вxодное реле (X)		1280 точек X0~×77, X10000~X11777,X20000 X20177,X30000~×30077	
	Выходное реле (M)		1280 точек YO~Y77, Y $10000 \sim$ Y 11777, Y20000~Y20177,Y30000~Y30077	
	Вспомогательное реле	Основное M	12000 точек HMO~HM11999	
		При выклпюченном питании HM		
		Специальное SM	5000 точек SM0-SM4999	
	поко	Основной 5	8000 точек S0~S7999	
		При выккююченном питании HS	1000 точee HSO-HS999	
	Таймер	Характеристика	Таймер с шагом $100 \mathrm{~ms}: 0.1 \sim 3276.7 \mathrm{~s}$, Таймер с шагом $10 \mathrm{~ms}: 0.01 \sim 327.67 \mathrm{~s}$,таймер с шагом 1ms:0.001~32.767s	
		Основной Т	5000 точек То~T4999	
		При выккючченном питании НТ	2000 точек HTO-HT1999	
	Подсчёт	Характеристика	16-bit счетчик:0~32767 32-bit счетчик: -2147483648~+2147483647	
		Основной С	5000 точек С0~C4999	
		При выключенном питании НС	2000 точек HCO-HC1999	
	Специальная катушка для инструкции WAIT		32 точки SEMO-SEM31	
	Регистр данных	Основной D		
		При выключенном питании HD	25000 точек HDO~HD24999	
		Специальный SD	5000 точек SDO-SD4999	
	$\begin{aligned} & \text { Peructp } \\ & \text { FlashROM } \end{aligned}$	При выкпоченном питании FD	8192 точек FDO~FD8191	
		Специальный SFD	6000 точek SFDO-SFD5999	
		Защищённый FS	48 точек FSO~FS47	

[^5]
ПЛК для управления движением

Серия XDM

Помимо всех функций стандартного Плк, он обладает более
высокой скоростью обработки (примерно в 15 раз выше, чем сысокой скоростью обработки (примерно в 15 раз выше, чем серии XC), большим объемом встроенной памяти, двухосевым Поддерживает, внешнююю SD-карту для хранения данных, а также
подключение правого модуля расширения, платы расширения BD и левого модуля расширения.
(1) Объём встроенной памяти $512 \mathrm{~KB} \sim 1.5$ МВ (2) Поспедовательное управление вводом-выводом
(3) Максимум 572 точки ввода/вывода

(6) Полевая шина X -NET
(7) 4~10 импульсных выхода по 100 KHz
(8) 4~10 входов высокоскоростного счётчика (одна фаза - 80КHz, AB фазы - 50 KHz)
(9) ЧУнв-порт вы"сокоскоростной загрузки данных (макс. 12Mbps)
(1) Линейная/круговаяя инттерполяция

Технические характеристики

Продукты серии ХDM-		2474	3274	6074	60T4L	60710
Вводы/выводы основного блока	Bcero точек	24	32	60	60	60
	Точек ввода	14	18	36	36	36
	Точек вывода	10	14	24	24	24
Максимальное количество точек		536	544	572	572	572
Высокоскоростное позиционирование	Общие импупьсные	4 ocn	4 ocn	4 оch	4 оcn	10 осей
	Дифференциальные	-	-	-	-	\cdot
Высокоскоростной ВХОД	Одна фаза/АВ фазы	4 канала	4 канала	4 канала	4 канала	10 каналов
	Режим ввода	OC	OC	OC	OC	OC
Возможности расширения	Правый модуль	16	16	16	16	16
	Левый модуль	1	1	1	1	1
	BD-плата	1	1	2	2	2
Прерывание	Внешнее прерывание	10				
	Прерыввание по	20				
	Другие прерывания	Высокоскоростное прерывание, импупьсное прерывание				
Функции связи	Порты связи	1 поpt RS232, 1 порt RS485, 1 порt USB				
	Протоколы связи	Стандартно - Modbus ASCII/RTU, свободный формат связи				
Функция шины		Попевой X - NET				
Широтно-импупьсная модупяция (ШИм)		Поддерживает				
Измерение частоты		Поддерживает				
Точное время		26 точек ETO~ET25 (можно испопьзовать только четные числа)				
Управление несколькими станциями		Поддерживает				
Режим выпопнения программы		Режим цикпическогг сканирования				
Метод программирования		Инструкция, лестничная диаграмма, язык программирования C				
Хранение данных без внешнего питания		Применяется FlashROM с литиевой батарейкой (габпетка 3V)				
Скорость обработки базовых команд		0.02~0.05икс				
Обьём встроенной памяти(скрытая загууза)		512KB (XDM-60T4L:1.5MB)				

[^6]
Перечень моделей серии XDM

Модель						
Питание переменным током				Питание постоянным током		
	Релейный выход	$\begin{gathered} \text { Tранззсторный } \\ \text { выход } \end{gathered}$	Смешанный транзисторнорелейный выход	Релейный ВыхОД	$\begin{gathered} \substack{\text { Tранззисторный } \\ \text { выход }} \end{gathered}$	Смешанный транззсторно- релейный выход
Тип NPN	-	XDM-24T4-E	-	-	XDM-24T4-C	-
	-	XDM-32T4-E	-	-	XDM-32T4-C	-
	-	XDM-60T4-E	-	-	XDM-60T4-C	\cdot
	.	XDM-60T10-E	-	-	XDM-60T10-C	-
	-	XDM-60T4L-E	-	-	-	\cdot
Tип PNP	.	XDM-24PT4-E	-	.	XDM-24PT4-C	-
	-	XDM-32PT4-E	-	-	XDM-32PT4-C	-
	-	XDM-60PT10-E			XDM-60PT10-C	

Продукты серии XDМ-			2474	32T4	6074	60T4L	60710
Функция эащиты			6-битное шифрование ASCII паропя, скрытая загрузка				
Функция самодиагностики			Самодиагностика при включении, таймер мониторинга, проверка синтаксиса				
Часы реального времени			Встроенные часы, питание от литиевой батареи, с памятью отключения питания				
Внешняя SD-карта			Поддерживает				
	Входное реле (X)		1280 точек X0~ $\times 77, \times 10000 \sim \times 11777, \times 20000 \sim$ 20177, X30000~ 300077				
	Выходное реле (Y)		1280 точек Y0-Y77, Y $10000 \sim$ Y $11777, Y 20000 \sim Y 20177, Y 30000 \sim$ Y 30077				
	Вспомогательное реле	Основное	70000 точек M0-M699999				
		При выккпюченном	12000 точек HMO-HM11999				
		Специальное SM	5000 точeк SMO-SM4999				
	Поток	Основной S	8000 точек S0~S7999				
		При выкпючченном питании НS	1000 тoчeк HSO~HS999				
	Тайм	Характеристика	Таймер с шагом $100 \mathrm{~ms}: 0.1 \sim 3276.7 \mathrm{~s}$,таймер с шагом10ms:0.01~327.67s,таймер c шагом1ms:0.001~32.767s				
		Основнойт	5000 точек То~ T4999				
		При выключенном питании НТ	2000 точек HT0-HT1999				
	Подсчёт	Характеристика	16-bit счетчик: 0~32767 32-bit счетчик: -2147483648~+2147483647				
		Основной С	5000 точек C0~C4999				
		При выключенном питании НС	2000 точек HCO~HC1999				
	Специальная катушка для инструкции WAIT		32 точки SEMO-SEM31				
	Регистр данных	Основной D	70000 точек DO~D69999				
		При выккпчченном	25000 точек HDO-HD24999				
		Специальный SD	5000 точек SDO-SD4999				
	Регистр FlashROM	При выключенном питании FD	8192 точeк FDO~FD8191				
		Специальный SFD					
		Защищённый FS	$\frac{6000 \text { тoчer SFDO-SFD5999 }}{48 \text { точek FSO~FS47 }}$				

С шиной управления движением X-NET

Серия XDC
В дополнение ко всем функциям стандартного плк, он обладает
более высокой скоростью обработки (примерно в 15 раз выше чем у более высокой скоростью обработки (примерно в 15 раз выше, чем у
серии XC) и поддерживает управление через шину движения X-NET серии 20 осей). Поддерживает подключение правого модуля
(расширения, платы $B D$ и левого модуля расширения.
(1) Объём встроенной памяти 384 KB
(2) Последовательное управление вводом-выводо
3) Максимум 572 точки ввода/вывода
(4) RS2 232, RS485
6) Полевая шина X -NET
(8) Шина управления движением X-NET
(8) 4 входа высокоскоростного счётчика (одна фаза - $80 \mathrm{KHz}, \mathrm{AB}$ фазы - 50 KHz) (©) 2 скоростных импупьсных выхода 100 KHz

Технические характеристики

Продукты серии XDC-		24 T	32 T	48 T	609
Вводы/выводы основного блока	Всего точек	24	32	48	60
	Точек ввода	14	18	28	36
	Точек вывода	10	14	20	24
Максимальное количество точек		536	544	560	572
Высокоскоростное позиционирование	Общие импульсные выходы	2 оси	2 ocn	2 con	20 cn
	Дифференциальные	.	-	.	.
Высокоскоростной вход	Одна фаза/АВ фазы	4 канала	4 канала	4 канала	4 канала
	Режим ввода	O	OC	OC	OC
Возможности расширения	Правый модуль	16	16	16	16
	Левый модуль	1	1	1	1
	BD-плата	1	1	2	2
Прерывание	Внешнее прерывание	10			
	Прерывание по времени	20			
	Другие прерывания	Высокоскоростное прерывание, импульсное прерывание			
Функции связи	Порты связи	2 порта RS232 (По уммопчанию СОМ1 - связь X-NET), 1 порт RS485			
	Протоколы связи	Стандартно -ModbusASCII/RTU свободный формат связи			
Функция шины		Полевой X-NET, шина движенияX-NET			
Широтно-импульсная модупяция (ШИМ)		Поддерживает			
Измерение частоты		Поддерживает			
Точное время		26 точек ETO~ET25 (можно использовать только четные чиспя			
Управпение несколькими станциями		\cdots			
Режим выполнения программы		Режим циклпческого сканирования			
Метод программирования		Инструкция, лестничная диаграмма, язык программирования Си			
Хранение данных без внешнего питания		Применяется FlashROM с литиевой батарейкой (табпетка ЗV)			
Скорость обработки базовых команд		0.02~0.05mкс			
Обьём встроенной памяти(скррытая загрузк)		384 KB			

Перечень моделей серии XDC

Модель						
Питание переменным током				Питание постоянныМ током		
	Релейный выход	$\begin{gathered} \substack{\text { Tранззсторный } \\ \text { выход }} \\ \hline \end{gathered}$	Смешанный транзисторно- релейный выход	Релейный выход	Tранззсторный выход	Смешанный транззсторно- релейный выход
Тип NPN	-	XDC-24T-E	-	-	XDC-24T-C	-
	-	XDC-32T-E	-	-	xDC-32T-C	-
	-	XDC-48T-E	-	.	xDC-48T-C	-
	-	XDC-60T-E	-	-	XDC-60T-C	-
Tип PNP	-	-	-	-	XDC-60PT-C	-

Продукт серии XDC-			24 T	32 T	48 T	609
Функция защиты			6-битное шифрование ASCII пароля, скрытая загрузка			
Функция самодиагностики			Самодиагностика при вклочении, таймер мониторинга, проверка синтаксиса			
Часы реального времени			Встроенные часы, питание от литиевой батарее, с памятью отключения питания			
Внешняя SD-карта			1280 точек X0~X77, X10000 $\times 11777, \times 20000 \sim \times 20177, \times 30000 \sim \times 30077$			
	Входное реле (X)					
	Выходное реле ()		1280 точек Y0~Y77,Y10000~Y11777,Y20000~Y20177,Y30000~Y30077			
	Вспомогательное реле	Основное M	70000 точек M0-M69999			
		При выключенном питании HM	12000 точек HMO-HM11999			
		Специальное SM	5000 точек SMO-SM4999			
	Поток	Основной 5	8000 точек S0~S7999			
		При выккпоченном	1000 точek HSO-HS999			
	Таймер	Характеристика	Таймер с шагом $100 \mathrm{~ms}: 0.1 \sim 3276.7 \mathrm{~s}$,таймер с шагом $10 \mathrm{~ms}: 0.01 \sim 327.67 \mathrm{~s}$,таймер с шагом 1ms: 0.001~32.767s			
		Основной T	5000 точек T0~ T4999			
		При выкклоченном питании НT	2000 точек HTO~HT1999			
	Подсчёт	Характеристика	16-bit счетчик 0~32767 32-bit счетчик -2147483648~+2147483647			
		Основной С	5000 точек C0~C4999			
		При выкппюченном питании HC	2000 точек HCO-HC1999			
	Специальная катушка для инструкции WAIT		32 точки SEMO-SEM 31			
	Регистр данных	ОСновной D	70000 точeк DO~D69999			
		При выклпоченном питании HD	25000 точек HDO-HD24999			
		Спечиальный SD	5000 точек SDO~SD4999			
	PeructpFlashROM	При выключенном питании FD	8192 точек FDO~FD8191			
		Специальный SFD	6000 точek SFDO~SFD5999			
		Защищённый FS	48 точek FSO-FS47			

[^7]
ПЛК с шиной связи Ethernet

Серия XD5E

В дополнение ко всем функциям серии XD5 (кроме функции SDкарты), он имеет более высокую скорость обработки данных
(примерно в $2 \sim 3$ раза выше, чем у серии ХDМ), больший объём встроенной памяти, поддерживает связь через последовательный порт RS232, RSA45 и Ethernet, a также подключение праввго модуля
расширения ED.
(1) Объём встроенной памяти 1 M
(2) Последовательное управление вводом-выводом
(3) Максимум 572 точки ввода/вывода
(4) Базовые команды 0.02~0.03мкс
(5) RRS 232, RS 485, RJ45

(D) 2~10 высокоскоростных импупьсных выхода по 100 KHz
(8) $3 \sim 10$ входов высокоскоростного счётчика (одна фаза - 80 KHz , AB фазы - 50 KHz)

Технические характеристики

Продукты серии XDSE-		24R/T	30RT	3074	48R/T	60R/T	6074	6076	60T10
Вводы/выводы основного блока	Bcero точек	24	30	30	48	60	60	60	60
	Точек ввода	14	16	16	28	36	36	36	36
	Точек вывода	10	14	14	20	24	24	24	24
Максимальное количество точек		536	542	542	560	572	572	572	572
Высокоскоростное позиционирование	Общие импупьсные выходы	2 ocn	2 ocn	40 ch	2 ocn	2 оcи	40 ch	6 ocn	10 осей
	Дифференциальные	.	.	-	
Высокоскоростной ВХОД	Одна фаза/AB фазы	3 канала	3 канала	4 канала	3 канала	3 канала	4 канала	6 каналов	10 каналов
	Режим ввода	Oc	0 C						
Возможности расширения	Правый модуль	16	16	16	16	16	16	16	16
	Левый модуль	1	1	1	1	1	1	1	1
	BD-плата	1	1	1	2	2	2	2	2
Прерывание	Внешнее прерывание	10							
	Прерывание по времени	20							
	другие прерывания	Высокоскоростное прерывание, импупьсное прерывание							
Функции связи	Порты связи	1 порт RS232,1 порт RS485,2 порта RJ45							
	Протокопы связи	СТандартно - Modbus ASCII/RTU, свободный формат свззи, связь Ethemet							
Функция шины		Полевой X -NET							
Широтно-импульсная модупяция (ШИм)		Поддерживает							
Измерение частоты		Поддерживает							
Точное время		26 точек ETO-ET25 (Можно испольэовать только четные числа)							
Управление несколькими станциями		Поддерживает							
Режим выполнения программы		Режим цикпического сканирования							
Метод программирования		Инструкция, лестничная диаграмма, язык программирования Си							
Хранение данных без внешнего питания		Применяется FlashROM с питиевой батарейкой (табпетка 3V)							
Скорость обрабоотк базовых команд		$0.01 \sim 0.03$ мкс							
Обьём встроенной памяти(скрытая загрузка)		1 MB							

Перечень моделей серии XD5E

Модель						
Питание переменным током				Питание постоянным током		
	Релейный выход	$\begin{aligned} & \text { Tраннисторный } \\ & \text { выхоод } \end{aligned}$	Смешанный транзисторнорелейный выход	$\begin{gathered} \text { Релейный } \\ \text { выход } \end{gathered}$	$\begin{gathered} \text { Tранзисторный } \\ \text { выход } \end{gathered}$	Смешанный транзисторнорелейный выход
Tип NPN	XD5E-24R-E	XD5E-24T-E		XDSE-24R-C	.	
	XD5E-30R-E	XDEE-30T-E	-	-	.	-
	-	XDSE-30T4-E	.	.	XDSE-30T4-C	.
	XD5E-48R-E	XD5E-48T-E
	XDSE-60R-E	XDEE-60T-E	.	-	-	-
	-	XDSE-60T4-E	.	-	XD5E-60T4-C	.
	.	XD5E-60T6-E	.	.	XDSE-60T6-C	.
	.	XDEE-60T10-E	.	.	XDSE-60T10-C	-
Tип PNP	.	XDSE-30PT4-E
	.	XDSE-60PT6-E	.	.	-	.
					XD5E-60PT10-C	

Продукты серии XDSE-			24RT	30R/T	3074	48R/T	60R/T	6074	6076	60T10
Функция защиты			6-битное шифрование ASCII паропя, скрытая загрузка							
Функция самодиагностики			Самодиагностика при вклочении, таймер мониторинга, проверка синтаксиса							
Часы реального времени			Встроенные часы, питание от литиевой батареи, с памятью отключения питания							
Внешняя SD-карта										
	Входное реле (X)		1280 точeк: X0~x77,X10000~X11777, X20000~X20177, X30000~×30077							
	Выходное реле ()		1280 точек: Y0~Y77,Y10000~Y11777,Y20000~Y20177, Y30000~Y30077							
	Bспомогательноe реле	Основное М	70000 точек: M0-M69999							
		При выклююченном	12000 точек: HMO-HM11999							
		Специальное SM	5000 точек SMO-SM4999							
	Поток	Основной S	8000 точeк S0~S7999							
		При выккюченном питании HS	1000 точeк HSO~HS999							
	Таймер	Характеристика	Таймер с шагом $100 \mathrm{~ms}: 0.1 \sim 3276.7 \mathrm{~s}$,таймер с шагом $10 \mathrm{~ms}: 0.01 \sim 327.67 \mathrm{~s}$,таймер с шагом1ms:0.001~32.767s							
		Основной Т	5000 точек T0~T4999							
		При выключенном питании HT	2000 точек HTO-HT 1999							
	Подсчёт	Характеристика	16-bit счетчик 0~32767 32-bit счетчик -2147483648~+2147483647							
		Основной С	5000 точек C0~C4999							
		При выккпюченном питании НС	2000 точек HCO-HC1999							
	Специальная катушка для инструкции WAIT		32 точки SEMO-SEM31							
	Реистт данных	Основной D	70000 точeк DO~D69999							
		При выключенном питании HD	25000 точек HDO-HD24999							
		Специальный SD	5000 точек SDO-SD4999							
	PerистрFlashROM	При выключенном питании FD	8192 точек FDO~FD8191							
		Специальный SFD	6000 точeк SFDO~SFD5999							
		Защищённый FS	48 точек FSO~FS47							

[^8]
ПЛК с шиной связи Ethernet

Серия XDME
В дополнение ко всем функциям серии XDM, он имеет более высокую скорость обработки данных (примерно в 2 ~ 3 раза
выше, чем у серии ХDM), больший объём встроенной памяти, поддерживает подключение правого модуля расширения, платы BD и левого модуля расширения $E D$.
(1) Объём встроенной памяти 1 MB
(2) Последовательное управление вводом-выводом
3) Максимум 572 точки вввда/вывода
(5) RS232, RS485, RJ45
(5) Полевевая шина XJ -NE
(7) 4~10 высокоскоростных импульсных выхода по 100 KHz

(8) 4~10 входов высокоскоростного счётчика (одна фаза - 80 KHz , АВ фазы-50 KHz)
(9) Линейная/круговая интерполяция
(1) Функция «follow-ир»

Технические характеристики

Продукты серии XDME-		3074	6074	60710
Вводы/выводы основного блока	Bсего точек	30	60	60
	Точек ввода	16	36	36
	Точек вывода	14	24	24
Максимальное количество точек		542	572	572
Высокоскоростное позиционирование	Общие импупьсные	4 ocn	40 ch	10 осей
	Дифференциальные	-	-	-
Высокоскоростной вход	Одна фаза/AB фазы	4 канала	4 канала	10 каналов
	Режим ввода	oc	OC	OC
Возможности расширения	Правый модуль	16	16	16
	Левый модуль	1	1	1
	BD-плата	1	2	2
Прерывание	Внешнее прерывание	10		
	Прерыввание по	20		
	Другие прерывания	Высокоскоростное прерывание, импуппсное прерывание		
Функции связи	Порты связи	1 порt RS232, 1 порt RS485, 2 порта RJ45		
	Протоколы связи	Стандартно - Modbus ASCIIRTU, свободный формат связи, связзь Ethemet		
Функция шины		Попевой X -NET		
Широтно-импупьсная модупяция (ШИм)		Поддерживает		
Измерение частоты		Поддерживает		
Точное время		26 точек ETO~ET25 (можно использовать только четные числа)		
Управление несколькими станциями		Погдержквает		
Режим выполнения программы		Режим циклического сканирования		
Метод программирования		Инструкция, лестничная диаграммма, язык программирования C		
Хранение данных без внешнего питания		Применяется FlashROM с литиевой батарейкой (табпеекаа 3V)		
Скорость обработти базовых команд		$0.01 \sim 0.03$ мкс		
Обьём встроенной памяти(скрытая загрузка)		1 MB		

Перечень моделей серии XDME

Модель						
Питание переменным током				Питание постоянным током		
	Релейный ВЫхОД	$\begin{gathered} \substack{T \text { ранззисторный } \\ \text { выход }} \\ \hline \end{gathered}$	Смешанный транззсторно- релейный выход	Релейный выход	Транзисторный выход	Смешанный транзисторнорелейный выход
PN	-	XDME-30T4-E	-	-	XDME-30T4-C	-
	-	XDME-60T4-E	.	-	-	.
	-	XDME-60T10-E

Продукты серии XDME-			3074	6074	60T10
Фруниция эащиты			6-битное шифрование ASCII пароля, скрытая загруза		
Функция самодиагностики			Самодиагностика при включении, таймер мониторинга, проверка синтаксиса		
Часы реального времени			Встроенные часы, питание от литиевой батареи, с памятью отключения питания		
Внешняя SD-карта			-		
	Bxoдное реле (X)		1280 точек: X0~ $\times 77, \times 10000 \sim \times 11777, \times 20000 \sim \times 20177, \times 30000 \sim \times 30077$		
	Выходное репе (Y)		1280 точек: Y0~Y77,Y10000~Y11777, Y20000-Y20177, Y30000~Y30077		
	Вспомогатель- ное реле	Основное М	70000 точeк: M0-M69999		
		При выключенном питании HM	12000 точeк: HMO-HM11999		
		Специальное SM	5000 точек SMO-SM4999		
	Поток	Основной 5	8000 точек S0-S7999		
		При выклюоченном питании HS	1000 тoчex HS0~HS999		
	Таймер	Характеристика	Таймер с шагом $100 \mathrm{~ms}: 0.1 \sim 3276.7 \mathrm{~s}$,таймер с шагом $10 \mathrm{~ms}: 0.01 \sim 327.67 \mathrm{~s}$,таймер с шагом1ms:0.001~32.767s		
		Основной ${ }^{\text {T }}$	5000 точек T0-T4999		
		При выккпоченном питании НТ	2000 точек НT0-HT1999		
	Поддчёт	Характеристика	16-bit счетчик: 0~32767 32-bit счетчик: -2147483648~+2147483647		
		Основной С	5000 точек C0-C4999		
		При выключенном питании НС	2000 точек HCO-HC1999		
	Специальная катушка для инструкции WAIT		32 точeк SEMO-SEM31		
	Регистр данных	Основной D	70000 тoчek D D D69999		
		При выключенном Питании НD	25000 точек HDO-HD24999		
		Специапьный SD	5000 точек SDO-SD4999		
	РегистрFlashROM	При выключенном питании FD	8192 точек FDO~FD8191		
		Специальный SFD			
		Защищённый FS	$\frac{6000 \text { точек SFDO-SFD5999 }}{48 \text { точek FSO~FS47 }}$		

[^9]
ПЛК с шиной EtherCAT

Серия XDH

Оснащён большинством функций XDM, имеет больший обьем
встроенной памяти и более высокую скорость обработки
сигналов. Поддерживает связь Ethernet, шину EtherCAT, сигналов. Поддерживает связь Ethernet, шину EthercAT,
команды управления движением, такие как интерполяция й функция «fоllow-up», правый модуль расширения и левый
модуль расширения ED .
модуль расширения ED
(1) Объём встроенной памяти $2 \sim 4 \mathrm{MB}$
(2) Связь через Etherne
(4) Баксимум 572 точки ввода/вывова команды $0.02 \sim 0.03$ мкс
(5) RS232, RS485, RJ45
(6) Полевая шина X-NET
(1) 4 высокоскоростных импульсных выхода по 100 KH
(8) 4 входа высокоскоростного счё тиика (до 200 KHz)
(9) 3 -х осевая линейная/круговая интерполяци
(1) Функция «follow-up)
(1) Связь по шине EtherCA
(2) 16 канальный электронный CAM (не поддерживается моделью XDH-30A16L)

Технические характеристики

Продукті серии хDН-		30816	30A16L	6074	60 A32
Вводы/выводы основного блока	Всего точек	30	30	60	60
	Точек ввода	16	16	36	36
	Точек вывода	14	14	24	24
Максимальное количество точек		542	542	572	572
Высокоскоростное позиционирование	Общие импульсные выходы	4000	40 ch	4 оси	4 оси
	Дифференциальные	-	.	-	-
Высокоскоростной ВХОД	Одна фаза/AB фазы	4 канала	4 канала	4 канала	4 канала
	Режим ввода	OC	OC	OC	OC
Возможности расширения	Правый модуль	16	16	16	16
	Левый модуль	1	1	1	1
	BD-плата	0	0	1	1
Прерывание	Внешнее прерывание	$10 \sim 2$			
	Прерывание по	20			
	Другие прерывания	Высокоскоростное прерывание, импупьсное прерывание			
Функции связи	Порты связи	1 порt RS232, 1 порt RS 485,2 порta RJ45			
	Протокопы связи	Стандартно - Modbus ASCIIRTU, свободный формат связи, связь Ethemet			
Функция шины		Управление шиной EtherCAT XDH-30A16,XDH-60A32,XDH-60T4: поддерживает перемещение по одной оси, группе осей и функцию электронного САМ XDH-30A16L: поддерживает перемещение по одной оси и группе осей (не поддерживает электронныйСАМ)			
Широтно-импупьсная модупяция (ШИМ)		$\stackrel{\square}{-}$			
Измерение частоты		-			
Точное время		26 точек ETO~ET25 (не поддерживает эту функцию)			
Управление несколькими станциями Режии выпопнения програмиы		Поддерживает			
		Режим циккпческого сканирования			
Метод программирования		Инструкция, лестничная диаграмма, язык программирования Си			
Хранение данных без внешнего питания		Применяется FlashROM с литиевой батарейко̆ (табллетка 3V)			
Скорость обработки базовых команд		$0.02 \sim 0.05 \mathrm{mkc}$	$0.02 \sim 0.05 \mathrm{mkc}$	0.01~0.03mkc	$0.01 \sim 0.03$ мкс
Объём встроенной памяти(скрытая загрузка)		2 MB	2 MB	4 MB	4 MB

Перечень моделей серии XDH

Модель						
Питание переменным током				Питание постоянным током		
	Релейный ВыхОД	$\begin{array}{\|l\|l\|} \hline \text { Tранззисторный } \\ \text { выход } \end{array}$	Смешанный рранзисторно- рееейны й выход	Релейный выход	$\begin{array}{\|c} \substack{\text { Tранззисторный } \\ \text { выход }} \\ \hline \end{array}$	Смешанный транзисторнорелейный выход
Tип NPN	-	XDH-30A16-E	-	-	-	-
	-	XDH-30A16L-E	.	-	XDH-30A16L-C	-
	.	XDH-60T4-E	.	.	XDH-60T4-C	.
$\overline{\text { Tип PNP }}$	\cdot	XDH-30PA16L-E	\cdot	\cdot	-	\cdot

Продукты серии ХDH-			30A16	30 A 16 L	6074	60A32
Функция эащиты			6-битное шифрование ASCII пароля, скрытая загруза			
Функ	ция самодиагност		Самодиагностика при вклюючении, таймер мониторинга, проверка синтаксиса			
Часы реального времени			Встроенные часы, питание от литиевой батареи, с памятыю отключения питания			
Внешняя SD-карта			1280 точе: X0~X77, X10000~X11777,X20000 X20177,X30000~30077			
Входное реле (X)						
Выходное реле (Y)			1280 точex: Y0~Y77,Y10000~Y11777, Y20000~Y20177,Y30000~Y30077			
	Вспомогатель- ное реле	Основное М	200000 точек M0-M199999			
		При выключенном питании НМ	20000 точек HMO-HM19999			
		Специальное SM	50000 точек SMO-SM49999			
	Поток	Основной 5	20000 точек S0-S 19999			
		При выкппчченном	2000 тouer HSO~HS 199			
	Таймер	Характеристика	Таймер с шагом $100 \mathrm{~ms}: 0.1 \sim 3276.7 \mathrm{~s}$,таймер с шагом $10 \mathrm{~ms}: 0.01 \sim 327.67 \mathrm{~s}$,таймер с шагом 1ms:0.001~32.767s			
		Основной Т	20000 точек T0~T19999			
		При выккпюченном питании НТ	2000 точeкHTO-HT 1999			
	Подс	Характеристика	16-bit счетчик: 0~32767 32-bit счетчик: -2147483648~+2147483647			
		Основной С	20000 точек C0-C19999			
		При выкппченном питании НС	2000 точек HCO-HC1999			
		Высокоскоростной счетчик	40 точeк HSCO~HSC39			
	Специальная катушка для инструкции WAIT		32 точки SEMO~SEM 31			
	Регистр данных	Основной D	500000 точек D0~D499999	500000 точек D0~D499999	500000 точек D0~D499999	1000000 точек D0~D999999
		При выключченном питании НD	$\begin{aligned} & 50000 \text { rouek } \\ & \text { HDDO~HD49999 } \end{aligned}$	$\begin{gathered} 50000 \text { точек } \\ \text { HDO~HD49999 } \end{gathered}$	$\begin{aligned} & 5000 \text { orouek } \\ & \text { HDOOHD99999 } \end{aligned}$	$\begin{aligned} & 10000 \text { royek } \\ & \text { HDO~HD99999 } \end{aligned}$
		Специальный SD	65488 точек SFDO-SFD65487			
	PeructpFlashROM	При выключенном питании FD	65536 точек FDO~FD65535			
		Специальный SFD	50000 точeк SFDO~SFD49999			
		Защищённый FS	48 точек FSO-FS47			

[^10]
Высокопроизводительный ПЛК с CODESYS

Серия XSDH

Малогабаритный плк, разработанный на платформе Codesys,
может значительно повысить эффективность програмй может значительно повысить эффективность программи-
рования и поддерживает среду программирования PLCopen. рования и поддерживает среду программирования PLCopen. быть использованы для разработки собственных функциональных блоков и библиотек коман
(1) Управление движением по EtherСАТ
(1)
(4) Связь по шине Ethernet
(5) Онлайн-загрузка команд

Технические характеристики

Продукты серии XSDH-		60A32
Вводы/выводы основного блока	Всего точек	60
	Точек ввода	36
	Точек вывода	24
Максимальное копичество точек		572
Высокоскоростное позиционирование	Общие импульсные выходы	4 оси
	Дифференцциальные	-
Высокоскоростной ВХОД	Одна фаза/АВ фазы	4 канала
	Режим ввода	OC
Возможности расширения	Правый модуль	16
	Левый модуль	1
	BD-ппата	1
Прерывание		10
Функции связи	Порты свззи	1 поpt RS232, 1 поpt RS485,2 nopra RJ45
	Протоколы связи	Стандартно - Modbus ASCII/RTU, связь Ethernet
Функиия шины		Управпение шиной ЕtherСАТ (до 32 узпов)
Метод программирования		ST, SFC, FBD, CFC, LD n IL
Основной процессор		Cortex-A8, основная частота 1 ГГи
Возможности пользовательской программы		32MB
Объем данных	Общие	30MB
	Хранение данных без внешнего питания	2 MB

Перечень моделей серии XSDH

Модель						
Питание переменным током				питание постоянным током		
	Релейный выход	Tранзисторный выхон	Смешанный транзисторнорелеиный выход	Релейный выход	$\begin{gathered} \hline \text { Транзисторный } \\ \text { выход } \\ \hline \end{gathered}$	Смешанный транзисторнорелейный выход
Tип NPN		XSDH-60A32-E				

Специальная модель для применения на морских судах

Серия CCSD
Модель прошла сертификацию Китайского классификационного Общества и допущена к применению на судах и морских объектах
ПЛК прошел соотвтствующие испытания на электромагнитную овместимость, что гарантирует стабильную и надежную работу истемы.
(1) Объём встроенной памяти 384 KB

Поддержка удалённого управпения входами/выходами по EtherCAT
Максимум 572 точки ввода/вывода
Базовые команды 0.02~0.03мкс
RS232, RS485
(8) Шина управления движением X-NET
8) 4 входа высокоскоростного счёттика (одна фаза - $80 \mathrm{KHz}, \mathrm{AB}$ фазы- 50 KHz)
9) 2 высокоскоростных импульсных выхода 100 KHz

Технические характеристики

Продукты серии CCSD-		C32T	C60T
Вводы/выводы основного блока	Всего точек	32	60
	Точек ввода	18	36
	Точек вывода	14	24
Максимальное количество точек		544	572
Высокоскоростное позиционирование	Общие импульсные выходы	2 ocn	2 оси
	дифференциальные		
Высокоскоростной вход	Одна фаза/AB фазы	4 канала	4 канала
	ежим ввода	OC	OC
Возможности расширения	Правый модупь	16	16
	Певый модупь	1	1
	BD-ппата	1	2
Прерывание	Внешнее прерывание	10	
	Прерывание по	20	
	другие прерывания	Высокоскоростное прерыва	
Функции связи	Порты связи	2 порта RS232 (по умолчан	
	Протоколы связи	Стандартно - Modbus AsCl	
Функция шины		Попевой X-NET, шина движ	
Широтно-импульнная модуляция (ШИМ)		Поддерживает	
Измерение частоты		Поддерживает	
Точное время		26 точек ETO-ET25 (Можно	
Управление несколькими станциями		-	
Режим выпопнения программы		Режим циккическогг сканир	
Метод программирования		Инструкция, пестничная ди	
Хранение данных без внешнего питания		Применяется Flashrom п п	
Скорость обработки базовых команд		0.02-0.05mкс	
Обьём встроенной памяти(сккрытая эагрузка)		384k	

Специальная модель для применения на морских судах
Перечень моделей серии CCSD

Модель						
Питание переменным током				Питание постоянным током		
	Релейный ВыхОД	$\begin{gathered} \substack{\text { Tранззсторный } \\ \text { выход }} \\ \hline \end{gathered}$	Смешанный транззсторно- релейный выход	Релейный выход	$\underset{\substack{\text { Транзисторный } \\ \text { выход }}}{ }$	Смешанный транзисторно- релейный выход
Tuп NPN	-	CCSD-C32T-E	-	-	CCSD-C32T-C	
	.	CCSD-C60T-E		.	CCSD-C60T-C	

Общие характеристики базового блока
Базовые характеристики

Характеристики	Значение
Напряжение изолячии	DC500V выше 2M
Шумозащита	Шумовое напряжение 1000 V р-p 1 мкс имп. 1 мин.
Окр.среда	Без коррозийных \times горочих газов
Рабочая температуре	$0^{\circ} \mathrm{C} \sim 60^{\circ} \mathrm{C}$
Влажность	5\% ~95\% (без конденсата)
Установка	Можно закрепить с помощью винтов МЗ или непосредственно на рейку
Заземление (FG)	Третий вид (не с общим оборудованием высокого тока)

заземление (FG) Третий вид (не с общим оборудованием высокого тока)

Характеристики питания

Питание переменным токо

Характеристики входов

тип NPN

дифференциальный тип	
Характтрииттика	Содержание
Вххдннй синна	5 V дифференциальный сигнал
Макс.частота	1MHz
Изопяция цепи	Оптопара
Отображение	Светодиод горит, когда вход активен

ифференциальный ти

Питание постоянным токо | Характеристики | Значение |
| :---: | :---: |
| Номинапноенанажения | |

Ноомнатьное напряккение $\mathrm{DC24V}$

$\begin{array}{l}\text { Допуссиммое время } \\ \text { откюючения питания }\end{array}$	$10 \mathrm{~ms} \mathrm{DC24V}$

Ток импульса	10 A DC26.4V

Махсимально потребпяемая	15 W (16 точек) / 30W (24 и более точек)

Питание датчика
15W (16 точек) / 30 W (24 и более точек) у 32 точек макс. 40 о mA
,
-
 \qquad

Основные характеристики базового блока

Выходные характеристики

нешнее напр	жение	Меньше AC25
Изоляция цепи		Механич
Индикатор активности		Светодиод
Макс.нагрузка	Резистивнаа	3A
	Индуктивная	80VA
	Ламповая	10
Минимальная нагрузка		DC5V 10
Время отклика	выкл \rightarrow ВКЛ	ms
	вКл \rightarrow Выкл	ms
Транзисторный выход		
Внешнее напряжение		DC5~30V
Изопяция цепи		Оптопара
Индикатор активности		Светодио
Макс.нагрузка	Резистивная	0.3 A
	Индуктивная	7.2W/DC24V
	Ламповая	1.5W/DC24V
Минимальная нагрузка		DC5V 2mA
Токутечки в разомкнутой цепи		Ниже 0.1 mA
отклика	выкл \rightarrow ВКл	Менее 0.2 ms
	вкл \rightarrow выкл	Менее 0.2

Высокоскоростной импульсный выход

Модель	RT/T	T4	T6	T10
Клеммы высокоскоростниго выхода	Клеммы Y0~Y1	Клеммы Y0~Y3	Клеммы Y0~Y5	Клеммы Y0~Y11
Внешний источник питания	Меньше DC5-30V			
Индикатор активности	Светодиод			
Max current	50 mA			
Pulse max output frequency	100 KHz			

дифференциальный высокоскоростной выход

Модель	XD5-xDnTm-E				
Выходной сигнал	5 V дифференциальный сигнал				
Максимальная частота	920kHz				
Изоляция цепи	Оптопара				
Индикатор активности	Светодиод		Время отклика	Выкл \rightarrow ВКЛ	Менееио 0.2 ms
:---	:---	:---	:---		

Характеристики связи последовательных портов (RS232/RS485)

Параметры	значение
Режим связи	Полудуплекс
Скорость передачи данных	4800bps, 9600bps, 19200bps (nо умалчанию), 38400bps, 57600bps, 115200bps
Тип данных	Бит данных: 5, 6, 7, 8 (по умолчанию), 9 Стоповый бит: 1 (по умолчанию), 1.5, 2 Чётность бита: нет, нечётный, чётный (по умолчанию)
Режим	RTU (по умолчанию), ASCII, свободный формат
Номер станции	1~255 (по умолчанию 1)
Задержка перед отправкой	1~100ms (по умолчанию 3ms)
Задержка ответа	$1 \sim 1000 \mathrm{~ms}$ (по умолчанию 300 ms)
Количество повторных попыток	1~20 раз (по умолчанию 3 раза)

Модуль расширения

Для того чтобы удовлетворить больше потребностей пользователя, базовые блоки плк серии XD могут быть оснащены разнообразными модулями расширения ввода/вывода, модулями аналогового ввода /вывода, модулями контроля температуры, платами ВD и левым модулем расширения. Базовый блок может оснащат
6 правыми модулями расширения, $1-2$ платами $B D$ и 1 левым модулем расширения различных типов.

Левый модуль
Аналоговый и температурный
одули расширения ис функацеей измерения

ใ
Модуль связи
плК может поддерживать

Модуль BD
Компактная карта расширения
устанаввиввется непосреесственно в
основной блк, не занимая пииннего

Правый модуль
Модуль расширения ввода/вывода
Испопьзуется для расширения копичества точек входа
выхода. Копичество точек составпяет от 8 до 32 , а базовый ыхода. Количество точек составпяет от 8
пок может быть расширен максимум до 51 Моддлд расширения выходов подразделяется на транзисторный
(T) реелейный (R).
Аналоговый и температурный модуль расширения Аналоговый и температурный модуль расширения
Имеет функции преобразования аналогового сигнапа в
цифровой и наоборот. Благодаряя модулюю расширения
 роцессами, как моженение температурыи ир давления, расход мидкости идр.
аогодаря добавлению функции PID-регулирования, бпок пее высокой точностью. Необоходимо задать топько четыре араметра.
существлять РІІ-регулиирование независимо. что позвопяет

Основные характеристики

Характеристика	Значение
Окружающая среда	Без коррозийных газов
Рабочая температура	$0^{\circ} \mathrm{C} \sim 60^{\circ} \mathrm{C}$
Температура хранения	$-20 \sim 70^{\circ} \mathrm{C}$
Рабочая влажность	5~95\%RH
Влажность хранения	5~95\%RH
Установка	Может быть закреплён при помощи болта МЗ или непосредственно на рейку типа DIN46277 (ширина 35 mm). BD плата устанавливается аналогично Плк.

Модули расширения

Правый модуль расширения
Модуль расширения с вводом/выводом
Данный модуль расширения позволяет расширить
базовый блок ПлК дополнительно на 512 точек входа/выхода, что позволяет решать максимальное количество производственных задач на одной
системе.

Модуль с цифровым вводом

Модель		Описание функции	Характеристика
Tип NPN	Tип PNP		
XD-E8X	XD-E8PX	8 каналов цифрового ввода, питание DC24V	Время входного фильтра 1~50 мс Внешний способ подключения: клеммная колодка Способ подключения: такой же, как и у блока ПЛК
XD-E16X	XD-E16PX	16 каналов цифрового ввода, питание DC24V	
XD-E32X-E	XD-E32PX-E	32 канапа цифрового ввода, питание AC220V	
XD-E32X-C	XD-E32PX-C	32 канала цифрового ввода, питание DC24V	

Модуль с цифровым выводом

Модель	нции	Характеристика
XD-E8Y	8 каналов релейного вывода	
XD-E8YT	8 каналов транзисторного вывод	
XD-E16YR	16 каналов релейного вывода	
XD-E16YT	16 каналов транзисторного вывода	
XD-E32YR-E	32 канала релейного вывода с питанием $\mathrm{AC22OV}$	
XD-E32YR-C	32 канала релейного вывода с питанием DC24V	
XD-E32YT-E	32 канала транзисторного вывода с питание $\mathrm{AC220V}$	
XD-E32YT-C	32 канала транзисторного вывода с питанием DC24V	

Модуль с цифровыми вводами/выводами

Модель		Описание функции	Характеристика
Tип NPN	Tип PNP		
XD-E8X8YR	XD-E8PX8YR	8 цифровых каннлоо ввода, 8 репейных каналов вывода с питаннем DC24V	Время входного фильтра $1-50 \mathrm{mc}$ R : выходное реле 1: выходной транзистор Время отклика R: менее 10 мс Время отклика T: менее 0,2 мс Максимальная нагрузка R: резистивная 3 A , Индуктиеная 80VA Максимальная нагрузка Т: максимальный выхОДНой ток каждой тоии составляет 0,3А Внешний способ подключения: клеммная колодка Способ подключения: такой же, как и у блока ПЛК
XD-E8X8YT	XD-E8PX8YT		
XD-E16X16YR-E	XD-E16PX16YR-E		
XD-E16X16YR-C	XD-E16PX16YR-C	16 цифроввх канәпов ввода, 16 рееейных канапов вивода с питаншем DC24V	
XD-E16X16YT-E	XD-E16PX16YT-E		
XD-E16X16YT-C	XD-E16PX16YT-C		

Аналоговый и температурный модули расширения
Преобразует цифровой сигнал в аналоговый и наоборот. Благодаря температуры, Плк серии ХD может осущесттпятть управление такими емпературы, плК серии XD может осуществпять управвение такими процес
Лпагодаря функции РID-регупирования, бпок можно испопьзовать
более широко и гибко с более высокой точностью регулирования, Более широко \rrbracket гибко с более высокой то
Необходимо задать только четыре параметра
ааждый канап модуля управпения температурой может осуществляп
PID-регулирование независимо, имеет функциию самонастройки
обменивается информацией с ПЛК посредством команд FROM и TO.

Модуль с аналоговым вводом (тип AD)

Модель	Каналов	Входной сигнал	Характеристики
XD-E4AD	4	Входное напряжение: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} /-5 \sim 5 \mathrm{~V} /-10 \sim 10 \mathrm{~V}$ Входной ток: $0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA} /-20 \sim 20 \mathrm{~mA}$	Источник питания: $\mathrm{DC} 24 \mathrm{~V} \pm 10 \%, 150 \mathrm{~mA}$ Скорость преобразования: 2 мс/канал Разрешение $1 / 16383$ (14 бит) Комплексная точность $\pm 1 \%$ Коэффициент фильтра AD 0~254 Добавлен бит разрешения канала Канал $A D$ имеет функции короткого замыкания, обрыва цепи и обнаружения превышения диапазона
XD-E8AD	8	Входное напряжение: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} /-5 \sim 5 \mathrm{~V} /-10 \sim 10 \mathrm{~V}$ Входной ток: 0~20mA/4~20mA $-20 \sim 20 \mathrm{~mA}$ (перрые четыре канала - напрржение, поспенние четыре канала - ток)	
XD-E8AD-A	8	Входной ток: 0~20mA/4~20mAl-20~20mA	
xD-E8AD-v	8	Входное напряжение: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} / 5 \sim 5 \mathrm{~V} /-10 \sim 10 \mathrm{~V}$	
xD-E12AD-v	12	Входное напряжение: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} / 5-5 \mathrm{~V} /-10 \sim 10 \mathrm{~V}$	

Модуль с аналоговым выводом (тип DA)

Модель	Каналов	Входной сигнал	Характеристики
XD-E2DA	2	Выходное напряжение: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} /-5 \sim 5 \mathrm{~V} /-10 \sim 10 \mathrm{~V}$ Выходной ток: $0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$	
XD-E4DA	4	Выходное напряжение: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V}$ Выходной ток: $0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$	

модуль контроля температуры (тип РТ\&Тс)

Модель	Каналов	входной сигнал	Характеристики
xD-E6PT-P	6	PT100 платиновый термистр Диапазон температуры: $-100^{\circ} \mathrm{C} \sim 500^{\circ} \mathrm{C}$ (цифровой выходной диапазон значений: -1000~5000 16 бит со знаком, двоичный)	Источник питания: $\mathrm{DC} 24 \mathrm{~V} \pm 10 \%, 150 \mathrm{~mA}$ Точность регупирования $\pm 5 \%$ Разрешение $0,1^{\circ} \mathrm{C}$ Комплексная точность $\pm 1 \%$ относительное максимальное эначение) сорость преобразования РT 80 мс/канал Скорость преобррззования РТ 3450 мс/4 канала Коэфффииент фильтра РТ 0~254 аждыи канал имеет независимые параметры PID поддерживает функцию самонастройки Дополнительный период выборки Изопяция между каналами XD-E6TC-P-H
XD-E2TC-P	2	Типы термопар: $\mathrm{K}, \mathrm{S}, \mathrm{E}, \mathrm{N}, \mathrm{B}, \mathrm{T}, \mathrm{J}$ и R Температурный диапазон $0^{\circ} \mathrm{C} \sim 1300^{\circ} \mathrm{C}$ (для типа К) (цифровой выходной диапазон значений: $0 \sim 13000$, 16 бит со знаком, двоичный)	
xD-E6TC-P	6		
xD-E6TC-P-H	6		
XD-E4PT3-P	4	Pt100 платиновый термистр Диапазон температуры: $-100^{\circ} \mathrm{C} \sim 500^{\circ} \mathrm{C}$ (цифровой выходной диапазон значений: - $1000 \sim 5000$, 16 бит со знаком, двоичный)	

Модули расширения

Аналоговый гибридный модуль ввода/вывода (тип nADxPTmDA)

Модель	Каналов		Сигнап ввода/вывода	Характеристики
	Ввода	1вода		
XD-E4AD2DA	4	2	Входное напряжение: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} /-5 \sim 5 \mathrm{~V} /-10 \sim 10 \mathrm{~V}$ Входной ток: $0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA} /-20 \sim 20 \mathrm{~mA}$ выходное напряжение: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} /-5 \sim 5 \mathrm{~V} /-10 \sim 10 \mathrm{~V}$ Выходной : $0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$	Источник питания $\mathrm{DC} 24 \mathrm{~V} \pm 10 \%, 150 \mathrm{~mA}$ Скорость преобразования 2 мссккнал Входное разрешение 1/16383 (14 бит) Выходное разрешение $1 / 4095(12-6$ ит $)$ Комплексная точность $\pm 1 \%$ Добавлен бит разрешения канала Канап $A D$ имеет функцию обнаружения короткого замыкания, обрыва цепи и превышения диапазона
XD-E2AD2PT2DA	4	2	Входное напряжение: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V}$ Входной ток: $0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$ выходное напряжение: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V}$ Выходной ток: $0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$ Термометр: PT100 платиновый термистор Температурный диапазон:-100 $\sim 500^{\circ} \mathrm{C}$ (цифровой выходной диапазон значений -1000~5000, 16 бит со знаком, двоичный)	Источник питания: $\mathrm{DC} 24 \mathrm{~V} \pm 10 \%, 150 \mathrm{~mA}$ Водннео разрешениени $1 / 1023$ (10-бит) Выходное разрешение Коэффициент фильтрации AD $0 \sim 254$ Разрешение канала РТ $0.1{ }^{\circ} \mathrm{C}$ Комппексная точность $+1 \%$ Комппексная точность $\pm 1 \%$ (относительное максимальное значение) Скорость преобразования РТ 2 мс/канап Коэффициент фильтра PT 0~254 добавлен бит разреш
XD-E3AD4PT2DA	7	2	Входное напряжение: $0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$ Выходное напряжение: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V}$ ермометр: PT100 платиновый термистр емпературныи диа пазо значений - 1000~5000 (цифровой выходной диапаз 16 бит со знаком, двоичный)	

Весовой модуль расширения

Используется для преобразования аналогового сигнала
теноодатчика в цифровой сигнал. Весовой модуль обладает

 Особенности модуля
(1) Новый алгоритм, оптимизированная аппаратная система, более быстрый иточны контроль взвешивания 2) Анапоговые сигналы напряжения от 4 тензодатчиков могут быть (3) Высокопрроизводительный АцП, скорость выборки до 450 раз/с
(Точность отображения до $1 / 3000$ о (4) Точность овображения до $1 / 300000$
5) Функция автоматического отолеживания нуля

скорости по шине, что не влияет на скорость преобкразаввания

Характеристика	Значение	
Модель	XD-E1WT-C, XD-E2WT-C, XD-E4WT-C	XD-E1WT-D, XD-E2WT-D, XD-E4WT-D
Диапазон аналогового ввода	DC0~10mV (sensor $2 \mathrm{mV} / \mathrm{V}$)	DC-20~20mV
Фактическое разрешение АЦП	1/1048575 (208it)	1/8388607(23Bit)
Точность отображения	1/300000	1/500000
Нелинйность	0.01\%F.S0.01\%F.S ${ }^{150}$ рa3/c, 300 рa3/c, 450 раз/c опционально	
Скорость конверсии		
Источник питания	AC220V $\pm 10 \%, 50 / 60 \mathrm{~Hz}$	DC24V $\pm 10 \%$
Питание активации тензодатчика	$5 \mathrm{VDC/} / 120 \mathrm{~mA}$, четыре тензодатчика по 350Ω могут быть подключены параллельно	
Software version	V3.5.1 ивыше	V3.5.3 и выше

Измерительный модуль SSI энкодера XD-E4SSI

 Особенности модуляПоддержка 4 -канального абсолютного датчика положения или обнаружения датчика
Подходит для 10 ~ 31 бит SSI энкодера, поддерживает связь частотой $125 \mathrm{KHz} \sim 1 \mathrm{MHz}$
имеет функодом Грея или в двоичном формате
З. Имеет функциио обнаружения разьединения и оигнализацию

Характеристики

Характеристика	Значение
Источник питания	DC24V (диапазон: 20.4~28.8V)
Энергопотребление модуля	1 W (без нагрузки)
Определение положения	Абсолютный режим
Разница между данными SSI и сигналом часов	Соответственно стандарту RS422
Номер бита энкодера	10bit-31bit
Выходной иифровой диапазон	0~максимальное значение энкодера
Разрешение	1/максимальное значение энкодера
Частота связи	$125 \mathrm{KHz} \sim 1 \mathrm{MHz}$
Тип кодирования	Код Грея или двоичный код
Абсолютная точность	1\%
Скорость преобразования	400мкс/канал
Источник питания	DC

Макроизмерительный модуль XD-E2GRP

Прецизионный оптический датчик перемещения также называемый атчиком положения. Цифровые датчкки перемещения широко
спользуютоя для апгрейда старых и оснащения новых станков. Поспе оснащения обычных станков устройиттвами циффровой Ндикации, они способны более точно обрабатывать
XD-E2GRP широко испооьзуетсяя в для точных измерений, таких как ределение внутреннего и внешнего диаметра подшйника, опреде
т.n.
эксплуатационные характеристики
Диапазон: ± 1000 мкм
(2) Разрешение: 0.1 мкм

Погрешность линейности: $\leq 0.1 \%$
5) Рабочая температура: $-10 \sim 50^{\circ} \mathrm{C}$
б) Режим сбора данных: параллельная связь

Характеристики

Характеристика	значение
Источник питание	DC24V $\pm 10 \%$
Нелинейность	0.001\%F.S
Дрифт времени	0.005\%F.S
Чувствительность ввода	$0.004 \mathrm{WV} / \mathrm{d}$
Абсолютная точность	0.1\%

Модули расширения

Левый модуль расширения ED

В дополнение к поддержке правого модуля расширения, ПЛк серии XD могут также расширять еще один ED-модуль
на левой стороне. Левый модуль расширения ЕD выполнен в виде тонкой пластины, занимает мало места и имее функции АЦПоне. Левый модуль расширения ED выполнен в виде

Аналоговый и температурный модуль расширения ED
С функциями АЦПयムАП, измерения теппературы K серии $\times \mathrm{D}$ (кроме серии XD 1) можно подкпючить 1 модуль ED.

Модель	Сигнал ввода/вывода	Характеристики
XD-4AD-A-ED	4 входных канапа, ток: $0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$	Истонник питания модуля: $\mathrm{DC} 24 \mathrm{~V} \pm 10 \%$, 150 mA Скорость преобразования: 10 мс (все каналы) ADDA: $1 / 4095$ (12 бит) Pазрешение выхода по току/напряжжениг: $1 / 1023$ $(10-$ бит (10-бит) РТ: Дии ао точность преобразования АЦППЦАП: $\pm 1 \%$ иисонтемператур: : $100-500^{\circ} \mathrm{C}$ аазрешение температурнного вхопа: 0.10 C Комппексная точност канапа РТ. 0.8%
XD-4AD-V	4 входных канала, напряжение: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V}$	
XD-4DA-A-ED	4 выходных канала, ток: $0-20 \mathrm{~mA} / 4-20 \mathrm{~mA}$	
XD-4DA-V-ED	4 выходных канала, напряжение: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V}$	
xD-2AD2DA-A-ED	2 входных канала, ток: $0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$ 2 выходных канала, ток: $0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$	
xD-2AD2DA-V-ED	2 входных канала, напряжение: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V}$ 2 выходных канала напжяжение $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V}$	
XD-2AD2PT-A-ED	$\begin{aligned} & 2 \text { входных канала, ток: } 0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA} \\ & 2 \text { входных температурных канала: PT100 термистор } \end{aligned}$	
XD-2AD2PT-V-ED	$\begin{aligned} & 2 \text { входных канала, напряжение: } 0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} \\ & 2 \text { входных температурных канала: PT100 термистор } \end{aligned}$	
XD-2PT2DA-A-ED	2 входных температурных канала: PT100 термистор 2 выходных канала, ток: $0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$	
XD-2PT2DA-V-ED	2 входных температурных канала: PT100 термистор 2 выходных канапа, напряжение: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V}$	

Блок расширения связи ED

плК может осуществлять беспроводную передачу данных WIFI, 4G и другие, а также проводную связь, такую как RS232, RS485 и CANope
\qquad

XD-WBOXL-ED Левый модуль расширения WIF

Плата расширения BD

Плата расширения связи BD

xd-Ne-bD
Плата расширения BD серии XD
полевав шина, инTтерфейс X-NE

Название	Функция
Индикатор связи	Индикатор мигает, когда плата BD успешно обменивается данными
Клеммная колодка	Слева находится входная сигнальная клемм а справа - выходная сигнальная клемма

XD-Ns-BD
Модуль расширения серии XD

Расширение BD с точными часами
XD-RTC-BD
Более точная функция часов
погрешностью около 13 (
месяи.
ребование кпрошивке
vз.5.3 ввыше.

Модули расширения

Специальный модуль серии CCSD для применения на морских судах

Основные характеристики

Характеристика	Значение
Окружающая среда	Без коррозийных газов
Рабочая температура	$0^{\circ} \mathrm{C} \sim 60^{\circ} \mathrm{C}$
Температура хранения	$-20 \sim 70^{\circ} \mathrm{C}$
Рабочая влажность	5~95\%RH
Влажность хранения	5~95\%RH
Установка	Можно закрепить винтами МЗ или непосредственно установить на направляющую DIN46277 (ширина 35 мм). Плата BD устанавливается непосредственно на переднюю часть Плк

Цифровой модуль ввода/вывода CCSD-nXmY

Модель	Описание функций	Характеристика
CCSD-E16X16YR-E	16 цифровых каналов ввода, 16 релейных каналов вывода, питание AC220V	Время входного фильтра $1 \sim 50$ мс R: выходное реле : выходнойтранзистор Время отклика R менее 10 мс Время отклика Т менее 0,2 мс Максимальная нагрузка R: резистивная 3 A индуктивная 80VA Максимальная нагрузка T: максимальный выходной ток каждой точки 0.3А Внешний способ подключения: клеммная колодка Способ подключения: такой же, как у ПЛК
CCSD-E16X16YR-C	16 цифровых каналов ввода, 16 релейных каналов вывода, питание DC24V	
CCSD-E16X16YT-E	16 цифровых каналов ввода, 16 транзисторных каналов вывода, питание AC220V	
CCSD-E16X16YT-C	16 цифровых каналов ввода, 16 транзисторных каналов вывода, питание DC24V	

Аналоговый модуль ввода/вывода CCSD-nAD

Модель	Каналов	входной сигнал	Характеристика
ccsd-EsAD	8	Входное напряжение: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} /-5 \sim 5 \mathrm{~V} /-10 \sim 10 \mathrm{~V}$ Входной ток: $0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA} /-20 \sim 20 \mathrm{~mA}$ (первые четыре канала - напряжение, последние четыре - то	Источник питания для аналогового $\mathrm{DC} 24 \mathrm{~V} \pm 10 \%$, 150 mA Скорость преобразования 2 мс/канал Разрешение $1 / 16383$ (14 бит) Комплексная точность $\pm 1 \%$ Коэффициент фильтра AD 0~254 Добавлен бит разрешения канала Канал AD имеет функции обнаружения короткого замыкания, обрыва цепи и превышения диапазона

Аналоговый модуль ввода/вывода CCSD-nADmDA

Модель	Каналы		Сигналыввода/вывода	Характеристики
	Ввода	Вывода		
cCsD-E4AD2DA	4	2	Входное напряжение:: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} /-5 \sim 5 \mathrm{~V} /-10 \sim 10 \mathrm{~V}$ Входной ток: $0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA} /-20 \sim 20 \mathrm{~mA}$ Выходное напряжение: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} /-5 \sim 5 \mathrm{~V} /-10 \sim 10 \mathrm{~V}$ Выходной то:: 0~20mA/4~20mA	Источник питания: $\mathrm{DC} 24 \mathrm{~V} \pm 10 \%, 150 \mathrm{~mA}$ Скорость преобразования 2 мсскканал Выходное разрешение $1 / 4095$ (12 бит) Комплексная точность $\pm 1 \%$ Коэффициент фильтра AD 0~254 добавлен бит разрешения канала аанал AD имеет функцию обнаружения короткого замыкания, обрыва цепи и превышения диапазона

Модуль контроля температуры CCSD-nPT-P/CCSD-nTC-P

Модель	Каналы	Сигналы ввода	Характеристики
ccsD-E6PT-P	6	PT100 платиновый термистор Температурный диапазон $-100^{\circ} \mathrm{C} \sim 500^{\circ} \mathrm{C}$ (цифровой выходной диапазон-1000~5000, 16-bit со знаком, двоичный)	
ccsd-E6TC-P	6	Термопары (TC) типа K, S, E, N, B, T, J и R Температурный диапазон $0^{\circ} \mathrm{C} \sim 1300^{\circ} \mathrm{C}$ (тип K) (цифровой выходной диапазон $0 \sim 13000$, 16-bit со знаком, двоичный)	

Плата расширения связи BD

Название		Функция
Индикатор связи		Индикатор мигает, когда плата BD успешн обменивается данными
Клеммная колодка	A	$485+$
	B	485-
	SG	Заземление сигнала
	-	Свободная кпемма
Переключатель сопротивления клемм		Выберете с помощью переклюючателя,

Модуль расширения

Модуль－каплер серии МА для работь

 с удалёнными модулямиМодули серии МА вкключаютт чифровой вход и выход，аналоговый вход и выход
 интегрированным монтроллерам и другому оборупованию，поддерживаюющему протоко

Цифровой модуль расширения MA－nXnY

Модель	пояснение
MA－8X8YR	8 цифровых каналов ввода， 8 цифровых каналов вывода （релейные выходы）
MA－8X8YT	8 цифровых каналов ввода， 8 цифровых каналов вывода （транзисторные выходы）
MA－16X	16 цифровых каналов ввода
MA－16YR	16 цифровых каналов вывода（релейные выходы）
MA－16YT	16 цифровых каналов вывода（транзисторные выходы）

Аналоговый модуль расширения MA－nDA

Модель	Пояснение
MA－2DA	2канала，10－битный высокоточный аналоговый выход （напряжнне／ток на выбор）
MA－4DA	4 канала，10－битный высокоточный аналоговый выход （напряжение／токна выбор）

Аналоговый модуль ввода MA－nAD

Модель	Пояснение
MA－4AD	4 канала，12－битный высокоточный аналоговый ввод （напряжение／ток на выбор），PID－регулирование каждо

Аналоговый модуль вывода MA－nADmDA

Модель	Пояснение
MA－4AD2D	4 канала，12－битный высокоточный аналоговый ввод （напряжение／ток на выбор），PID－регулирование каждого канала канала， 10 －битный высокоточный аналоговый вывод （напряжение／ток на выбор）

Модуль контроля температуры MA－nPT－P／MA－nTCA－P

Модель	Пояснение
MA－6PT－P	6 каналов ввода PT100，PID－регулирование каждого канала， 6 каналов вывода． 1 mA постоянный выходной ток，не подверженный влиянию окружающей среды
MA－6TCA－P	6 каналов ввода термопары，PID－регулирование каждого， 6 каналов вывода．

Габариты

（Единицы：мм）

Комплектующие

Перечень комплектующих для основного блока

абель связи／программирования
VP／DVP
Для связи и загрузки／выгрузки программ．
 usb－com Дnя перехо

Кабель－переходник с DB9 на RS486 JC－EB－Lengt｜
абель DB9－RS485 для связи RS485
 （5m），ЈC－EB－8（8м）．

Полевая шина X－NET
JC-EA-Length

 JC－EA－1（1m），JC－EA－05（5m
 JC－EA－30 $(30 \mathrm{~m}), \mathrm{JC}$
JC－EA－100
（100 $)$

USB－кабель принтера JC－UA－15
пееиальный кабель загрузки для продуктов пје（кроме продуктов без ннтерфейса черный，сдвойыми магнитными

Релейный модуль JR－EH
Ноддодит во всех случаях связи через
RS485．

Адаптер для загрузки программ JD－P03
（1）Мо
Может испопьзоваться без компьтер данных между несколомьиимп ПЛлКххірје
（2）Подхооящий ПлК：для загрууки в плк

（3）JD－po3 имеет небольш
занимает мало места．

Перечень комплектующих для модулей расширения

Базовый блок серии XD

Соответствующая модель				
Cepии	XD1	XD2	XD3	XD5
Tочки		1016		

 очки 24/32 точки

 Точки $48 / 60$ точек

Соответствующая модель | Серии | XD5E | XDME | XDH |
| :--- | :--- | :--- | :--- |

| Точки $\quad 60$ точек |
| :--- | :--- |

Правый модуль расширения серии XD

Левый модуль расширения ED для ПЛК серии XD

Компактные plc

Компактный размер, широкий функционал, мощный процессор
ПЛК серии XL выполнен ввиде ультратонкой платы, оснащен мощным
обладает высокой надежностью. Благодаря своей компактности, идеально
обладает высокой надежностью. Благодаря свой компактннсти,
пододит для применения в условиях ограниченного пространства
(1) Маленький и практичный плк в узком исполнении
(2) Высокая совместимость с другими продуктами Xinje
(3) Большая способность к расширению
(4) Оптимальная стоимость

Бюджетная серия

Серия XL1
Относительно простой функционал, способный выполнять логическое
управление, работу с данными и другие общие функиии. Серия $X L 1$ управление, работу с данными идругие общие функции. Серия XL
оснащена портами RS232, RS485 и портом USB. Поддерживае сетевую функцию полевой шины X-NET. Не поддерживает модули
(1) Объём встроенной памяти 256 КВ
(2) Последовательное управление вводом/выводо
3) Максимум 16 точек ввода/вывода

Базовые команды $0.02 \sim 0.05$ мкс
(6) Поптевая 232, RS4 48
(8) Высокоскоростной порт USB (макс. 12Mbps)

Перечень моделей серии XL1

Модель						
Питание переменным током				Питание постоянным током		
	Релейный выход	$\begin{gathered} \substack{\text { Tранззсторный } \\ \text { выхоо }} \end{gathered}$	Смешанный транзисторнорелейный выход	Релейный	$\underset{\substack{\text { транзисторный } \\ \text { выхон }}}{\text { 位 }}$	Смешанный транзисторнорелейный выход
Tип NPN	-	-	-	-	XL1-16T	-
	.	-	.	-	XL1-16T-U	-
$\overline{\text { Tип PNP }}$	-					

Технические характеристики

Продукы серии хL1-		16 T	$16 T-U$
Вводы/выводы основного блока	Bсего точек	16	16
	Точек ввода	8	8
	Точек вывода	8	8
Маккимальное количество точек			16
Высокоскоростное позиционирование	Общие импульсные выходы	-	-
	Дифференциальные	.	.
Высокоскоростной вход	Одна фаза/AB фазы	.	.
	Режим ввода	.	.
Возможности расширения	Правый модуль	-	.
	Левый модупь	.	-
	BD-плата	-	-
Прерывание	Внешнее прерывание	6	6
	Прерывание по времени	20	20
	Другие прерывания	.	-
Функции связи	Порты связи	2 портa RS232,1 порt RS485	1 поpt RS232,1 порt RS485,1 1 поpt USB
	Протоколы связи	Стандартная связь Моdbus ASCIIRTU, связь в свободном формате	
Функция шины		Попевая шина X-NET	
Широтно-импульнная модупяция (ШИМ)		-	
Измерение частоты		-	
Точное время		-	
Управление несколькими станциями		P-	
Режим выполнения программы		Режим циклического сканирования	
Метод программирования		Инструкция, пестиичная диаграмма, яыык программирования Си	
Хранение данных без внешнего питания		Применяется FlashROM с литиевой батарейкой (таблетка 3V)	
Скорость обработки базовых команд Объём встроенной памяти (скрытая		$0.02 \sim 0.05$ мкс	
		256 KB	

Продукыы серии ХL1-			16 T	16T-U
Функция защиты			6 -битноө шифрование ASCII пароля, скрытая заггузка	
Функция самодиагностики			Самодиагностика при вклочении, таймер мониторинга, проверка синтаксиса	
Часы реального времени			Встроенные часы, питание от литиевой батареи, с памятью отключения питания	
Внешняя SD-карта			-	
	Входное реле (X)		896 точек:X0~X77, X10000~×11177, $200000 \sim \times 20177, \times 30000 \sim \times 30077$	
	Выходное реле(Y)		896 точeк:Y0-Y77,Y10000-Y11177, Y20000-Y20177,Y30000-Y30077	
	Вспомогательноө релө	Основное M	8000 точек М0~M7999	
		При выключенном питании НM		
		Специальное SM	2048 точек SM0-SM2047	
	Пotok	Основной S	1024 то4er S0-S1023	
		При выкпюченном питании HS	128 точек HSO-HS127	
	Таймер	Характеристика	Таймер с шагом $100 \mathrm{~ms}: 0.1 \sim 3276.7 \mathrm{~s}$,таймер с шагом $10 \mathrm{~ms}: 0.01 \sim 327.67 \mathrm{~s}$, таймер с шагом1ms:0.001~32.767s	
		Основной Т	576 точек T0~ 5575	
		При выклююченном питании HT	96 точек нто-Нт95	
	Подсчёт	характеристика	16-bit счетчик:0~32767 32-bit счетчик: -2147483648~+2147483647	
		Основной С	576 точек C0-C575	
		При выключенном питании HC	96 точек $\mathrm{HCO}-\mathrm{HC95}$	
	Специальная катушка для инструкции WAIT		32 точки SEM0-SEM31	
	Регистр данных	Основной D	8000 точeк DO~D7999	
		При выключенном питании HD	1000 точек HDO-HD999	
		Спечиальный SD	2048 точек SDO-SD2047	
	Регистр FlashROM	При выключенном питании FD	5120 точек FDO~FD5119	
		Специальный SFD	2000 точer SFDO~SFD1999	
		Защищӫнный FS	48 точек FSO~FS47	

[^11]
Стандартный тип

Серия XL3
Обладает полным набором функций. в дополнение к стандартным функциям обработки данных, контроллер имеет специальные функции, такие как высокоскоростной импульсный выход, функция высоко-
скоростного счета, широтно-импульсная модуляция, измерение частоты и точное время. Поддерживает подключение правого модуля
расширенияи левого модуля расширения.
(1) Объём встроенной памяти 256 KB
(2)
(4) Базовые командые $0.02 \sim 0.05$ мкс
(5) Порты RS232, RS485

6 Полевая шина X-NE
(1) Высокоскоростной порт USB (макс. 12Mbps)
(8) 3 канала высокоскоростного счётчика (одна фаза - 80 KHz, AB фаза - 50 KHz)
(9) 2 импульсных выхода 100 KHz

Перечень моделей серии XL3

Модель						
Питание переменным током				Питание постоянным током		
	Релейный выход	Tранзисторный выход	Смешанный транзисторнорелейный выход	Релейный выход	транзисторный выход	Смешанный транзисторнорелейный выход
Tип NPN	-	-	-	XL3-16R	XL3-16T	-
	.	.	.	XL3-32R	XL3-32T	.
Tип PNP	.	.	.	XL3-16PR	-	
	.	\cdot	.	XL3-32PR	.	

Технические характеристики

Продукты серии хLз-		16 RT	32 RTT
Вводы/выводы основного блока	Всего точек	16	32
	Точек ввода	8	16
	Точек вывода	8	16
Максимальное количество точек		336	352
Высокоскоростное позиционирование	Общие импульсные выходы	2 оси	2 оси
	дифференциальные	-	-
Высокоскоростной вход	Одна фаз/AB фазы	3 канала	3 канала
	Режим ввода	OC	OC
Возможности расширения	Правый модуль	10	10
	Левый модуль	1	1
	BD-плата	.	.
Прерывание	Внешнее прерывание	6	10
	$\begin{aligned} & \text { Прерывание по } \\ & \text { времени } \end{aligned}$	20	
	Другие прерывания	Высокоскоростное прерыва	
Функции связи	Порты связи	1 порt RS232, 1 nopt RS485,	
	Протоколы связи	Стандартная связь ModbusA	
Функция шины		Попевая шина X -NET	
Широтно-импульсная модупяция (ШИМ)		Поддерживает	
Измерение частоты		Поддерживает	
Точное время		26 точек ETO-ET25 (Можно	
Управление несколькими станциями		-	
Режим выполнения программы		Режим циклического сканир	
Метод программирования		Инструккия, лестничная диа	
Хранение данных бее внешнего питания		Применяется Flashrom с л	
Скорость обработки базовых команд		0.02-0.05икс	
Объём встроенной памяти(скрытая эагуузка)		256KB	

Продукты серии хLз-			16R/T	32R/T
Функция защиты			6-битное шифрование ASCII паропя, окрытая загрузка	
Функция самодиагностики			Самодиагностика при включении, таймер мониторинга, проверка синтаккиса	
Часы реального времени			Встроенные часы, питание от литиевой батареи, с памятью отклочения питания	
Внешняя SD-карта			896 точe: $\times 10 \sim \times 77, \times 10000 \sim \times 11177, \times 20000 \sim \times 20177, \times 30000 \sim \times 30077$	
	Входное реле (X) Выходное реле (Y)			
			896 точек: Y0~Y77,Y10000~Y11177, Y20000~Y20177,Y30000~Y30077	
	Вспомогательное реле	Основное М	8000 точек М0~M7999	
		При выключеннном питании HM	960 точек HMO-HM959	
		Специальное SM	2048 точек SMO-SM2047	
	Поток	Основной S	1024 точек S0-S1023	
		При выккпченнном питании HS	128 точек HSO~HS 127	
	Таймер	Характеристика	шагом1ms:0.001~32.767s	
		Основной Т	576 точек T0~T575	
		При выккпоченном питании НТ	96 точек НT0-HT95	
	Подсиёт	Характеристика	16-bit счетчик:0~3276732-bit счетчик: $-2147483648 \sim+2147483647$	
		Основной С	576 точек C0~C575	
		При выккючченном	96 точек HCO~HC95	
	Специальная катушка для инструкции WAIT		32 точки SEM0~SEM31	
	Регистр данных	Основной D	8000 точек DO~D7999	
		При выключенном питании HD	1000 точек HDO~HD999	
		Специальный SD	2048 точек SDO-SD2047	
	PerистpFlashROM	При выключенном питании FD	5120 точек FDO~FD5119	
		Специальный SFD	2000 тoчer SFDO-SFD1999	
		Защищённый FS	48 Toчek FSO~FS47	

[^12]
Улучшенный тип

Серия XL5
В дополнение ко всем функциям стандартного ПЛК, он имеет более высокую скорость обработки данных (примерно в 15 раз
выше, чем у серии ХС), большой объём встроенной памяти, от 2 выше, чем у серии хСс, большой обвем встроенной памяти, ота
до 4 каналов высокоскоростного импульсного выхода поддерживает подключение правого модуля расширения и левого модуля расширения ED.
(1) Объём встроенной памяти 512 KB
(2) Последовательное управление вводом/выводом
3) Максимум 576 точек ввода/вывода
(4) Базовые команды 0.02~0.05мкс
(5) Порты RS232, RS485
(6) Полевая шина X-NE
(1) Высокоскоростной порт USB (макс. 12Mbps)
(8) $3 \sim 4$ канала высокоскоростного счётчика (одна фаза - 80 KHz , AB фаза - 50 KHz) (9) 2~10 импупьсных выхода 100 KHz

Технические характеристики

Продукты серии XL5-		16 T	32 T	3274	64710
Вводы/выводы основного блока	Bсего точек	16	32	32	64
	Точек ввода	8	16	16	32
	Точек вывода	8	16	16	32
Максимальное количество точек		528	544	544	576
Высокоскоростное позиционирование	Общие импульсные Выходы	2 ocn	2 ocn	4 ocn	10 ocn
	Дифференциальные
Высокоскоростной вход	Одна фаза/AB фазы	3 канала	3 канала	4 канала	10 канапов
	Режим ввода	OC	OC	OC	OC
ВозМожности расширения	Правый модуль	16	16	16	16
	Левый модуль	1	1	1	1
	BD-плата	-	-		
Прерывание	Внешнее прерывание	6	10	10	10
	Прерывание по времени	20			
	Другие прерывания	Высокоскоростное прерывание, импульсное прерывание			
Фуккции связи	Порты связи	1 порт RS232,1 порт RS485,1 порт USB			
	Протоколы связи	Стандартная связь Моdbus ASCIIRTU, связь в свободном формате			
Функция шины		Попевая шина X-NET			
Широтно-импульсная модуляция (ШИМ)		Поддерживает			
Измерение частоты		Поддерживает			
Точное время		26 точек ЕТО-ЕТ25 (Можно использовать только четные чиспа)			
Управление несколькими станциями		-			
Режим выполнения программы		Режим циклического сканирования			
Метод программирования		Инструкция, лестничная диаграмма, язык программирования Си			
Хранение данных без внешнего питания		Применяется FlashROM с питиевой батарейкой (табпетка 3V)			
Скорость обработки базовых команд		$0.02 \sim 0.05$ мкс			
Объём встроенной памяти (скрытая загрузка)		512 KB			

Перечень моделей серии XL5

Модель						
Питание переменным током				Питание постоянным током		
	Релейный	$\underset{\substack{\text { Транзисторный } \\ \text { выход }}}{ }$	Смешанный транзисторнорепейный выход	Релейный выход	$\underset{\substack{\text { ранзисторный } \\ \text { выход }}}{\text { T. }}$	Смешанный транзисторнорелейный выход
	-	-	-	-	XL5-16T	-
Tun NPN	.	-	-	-	XL5-32T	.
	.	.	-	-	xL5-32T4	.
	-	.	-	-	XL5-64T10	-
$\underline{\text { Tип PNP }}$.	-	-	.	XL5-32PT4	-

Продукты серии хLз-			16 T	32 T	32 T 4	64710
Функция защиты			6-битное шифрование ASCII паропя, скрытая заггузка			
Функция самодиагностики			Самодиагностика при вклпчении, таймер мониторинга, проверка синтаксиса			
Часы реального времени			Встроенные часы, питание от литиевой батареи, с памятью отключения питания			
Внешняя SD-карта						
	Входное реле (X)					
	Выходное репе (Y)		1280 точек: Y0~Y77,Y10000~Y11777,Y20000~Y20177,Y30000~Y30077			
	Вспомогательное реле	Основное М	70000 точек			
		При выккпюченном питании HM	12000 точeк HMO-HM11999			
		Специальное SM	5000 точек SM0-SM4999			
	Поток	Основной S	8000 точек S0-57999			
		При выккпоченном питании Нs	1000 точек HSO~HS999			
	Таймер	Характеристика	Таймер с шагом100 ms:0.1~3276.7s,таймер с шагом10ms:0.01~327.67s,таймер c шагом1ms:0.001~32.767s			
		Основной T	5000 точек С0~C4999			
		При выключенном Питании НТ	2000 точек HCO~HC1999			
	Подсчёт	Характеристика	16-bit счетчик: $0 \sim 32767$32-bit счетчик: $-2147483648 \sim+2147483647$			
		Основной С	5000 точек С0~C4999			
		При выкпюченном питании HC	2000 точек HTO-HT1999			
	Специальная катушка для инструкции WAIT		32 точKи SEM0~SEM31			
	Регистр данных	Основной D	70000 точeк DO~D69999			
		При выключенном питании HD	25000 точек HDO~HD24999			
		Специальный SD	5000 точек SDO-SD4999			
	PeructpFlashROM	При выккююченном питании FD	8192 точек FDO~FD8191			
		Специальный SFD	6000 точек SFDO-SFD5999			
		Защищённый FS	48 точeк FSO~FS47			

[^13]
С шиной связи Ethernet

Серия XL5E

В дополнение ко всем функциям серии XL5, он имеет более высокую
скорость обработки данных (примерно в $2 \sim 3$ раза выше, чем у скорость обработки данных (примерно в 2 ~ 3 раза выше, чем у
серии ХDМ) и больший объём встроенной памяти (1Мб). Имеет серии XDM) " больший объём встроенной памяти (1Мб). Имеет
порты RS232, RS485 и Ethernet и от 2 до10 каналов импульсного выхода. Поддерживает подключение правого модуля расширения и
левого модуля расширения.
(1) Объём встроенной памяти 1 МВ
2) Поспедовательное управление вводом-выводом
(4) Базовые командик 0 .02~0 о озикс
(5) Порты RS232, RS485, RJ45
(6) Полевая X-NET fieldbus

е з~10 входов высокоскоростного счётчика (одна фаза - 80KHz, AB фазы - 50 KHz)

Перечень моделей серии XL5E

Модель						
Питание переменным током				Питание постоянным током		
	Релейный	Транзисторый	Смешанный транзисторнорепейный выход	Релейный выход	Транзисторный	Смешанный транзисторнорелейный выход
	-	-	-	-	XL5E-16T	-
	XLLE-32T	.
Tип NPN	XL5E-32T4	.
	XL5E-64T6	.
	XL5E-64T10	.
Tип PNP	XL5E-32PT4	

Продукты серии XL5E-			16 T	32 T	3274	6476	64710
Функция защиты			6-битное шифрование ASCII паропя, скрытая загрузка				
Функция самодиагностики			Самодиагностика при включении, таймер мониторинга, проверка синтаксиса				
Часы реального времени			Встроенные часы, питание от литиевой батареи, с памятью отключения питания				
Внешняя SD-карта			1280 точек: X0~ $777, \times 10000 \sim \times 11777, \times 20000 \sim \times 20177, \times 30000 \sim \times 30077$				
	Входное реле (X)						
	Выходное реле (Y)		1280 точек: Y0~Y77,Y10000~Y11777,Y20000~Y20177,Y30000~Y30077				
	Вспомогатель- ное реле	Основное М	70000 точек М0~M69999				
		При выключеннном питании HM	12000 точек HM0-HM11999				
		Специальное SM	5000 точек SM0-SM4999				
	Поток	Основной S	8000 точек S0~-57999				
		При выккпченнном питании HS	1000 точек HSO~HS999				
	Таймер	Характеристика	Таймер с шагом $100 \mathrm{~ms}: 0.1 \sim 3276.7 \mathrm{~s}$,таймер с шагом $10 \mathrm{~ms}: 0.01 \sim 327.67 \mathrm{~s}$,таймер с шагом1ms:0.001~32.767s				
		Основной Т	5000 точек С0-C4999				
		При выккпоченном питании НТ	2000 точек HCO-HC1999				
	Подсиёт	Характеристика	16-bit счетчик: $0 \sim 32767$32-bit счетчик: $-2147483648 \sim+2147483647$				
		Основной С	5000 точек С0-C4999				
		При выккючченном	2000 точек HTO~HT 1999				
	Специальная катушка для инструкции WAIT		32 точки SEM0~SEM31				
	Регистр данных	Основной D	70000 точeк D0~D69999				
		При выккпоченном питании НD	25000 точек HDO-HD24999				
		Специальный SD	5000 точек SDO-SD4999				
	PerиctpFlashROM	При выключенном питании FD	8192 точек FDO~FD8191				
		Специиальный SFD	6000 точек SFDO-SFD5999				
		Защищённый FS	48 точек FSO~FS47				

[^14]
С протоколом связи CAN

Серия XL5N
Совместим с большинством функций серии XL5E, имеет
встроенную независимую двух-канальную связь САN встроенную независимую двух-канальную связь CAN,
оснащен портами RS232, RS485, RJ45, поддерживает оснащен портами RS232, RS485, RJ45, поддерживает скоростной подсчет, а также подключение правого модуля
расширения и левого модуля расширения.
(1) Объём встроенной памяти 1 МВ
2) Поспедовательное управление вводом-выводом
(4) Базовые командык $0.02 \sim 0.03$ ккс
(5) Порты RS232, RS485, RJ45
(6) 2 канала связи CAN, поддерживает CANopen
исвободный формат свдзии CAN
(8) Поддерживает связь Ethernet
(8) 2 высокоскоростных импульсных выхода по 100 KH
(9) входа высоооскоростного счётчика (одна фаза - 80KHz, AB фазы - 50 KHz)

Перечень моделей серии XL5N

Модель						
Питание переменным током				Иитание постоянным током		
	Релейный выход	$\underset{\substack{\text { Tранзисторный } \\ \text { выход }}}{\substack{\text {. } \\ \text {. }}}$	Смешанный транзисторно- репейный выход	Релейный выход	$\begin{gathered} \substack{\text { Tранззсторный } \\ \text { выход }} \\ \hline \end{gathered}$	Смешанныы̆ транзисторно- релейный выход
$\underline{\text { Tип NPN }}$	-				XL5N-32T	

Продукты серии XL5N-			32 T
Функция защиты			6-битное шифрование ASCII пароля, скрытая загрузка
Функция самодиагностики			Самодиагностика при вклочении, таймер мониторинга, проверка оинтаксиса
Часы реального времени			Встроенные часы, питание от литиевой батареи, с памятью отключения питания
Внешняя SD-карта			-
Входное реле (X)			1280 точек: X0~X77, X10000~X11777, X20000~X20177,X30000~×30077
Выходное реле (Y)			1280 точек: Y0~Y77, Y10000~Y11777,Y20000~Y20177,Y30000~Y30077
	Вспомогатель- ное реле	Основное М	200000 точек M0~M199999
		При выккююченном питании HM	20000 точeк HMO-HM19999
		Спечиальное SM	5000 точек SMO~SM4999
	Поток	Основной S	20000 точек S0-S 19999
		При выключенном питании HS	2000 точек HSO~HS 1999
	Таймер	Характеристика	Таймер с шагом $100 \mathrm{~ms}: 0.1 \sim 3276.7 \mathrm{~s}$,таймер с шагом10ms:0.01~327.67s,таймер c шагом1ms:0.001~32.767s
		Основной ${ }^{\text {T }}$	20000 точек T0~T19999
		При выключенном питании НТ	2000 точек НТо-HT1999
	Подсчёт	Характеристика	16-bit счетчик: 0~32767 32-bit счетчик: -2147483648~+2147483647
		Основной С	20000 точек CO-C19999
		При выккюченном	2000 точек HCO-HC1999
	Специальная кат WAIT	тушка для инструкции	32 точки SEMO~SEM31
	Регистр данных	Основной D	500000 точек DO~D499999
		При выккююченном питании HD	50000 точек HDO-HD49999
		Специальный SD	50000 точек SDO~SD49999
	$\begin{array}{l}\text { Peructp } \\ \text { FlashROM }\end{array}$	При выключенном питании FD	65536 точек FDO~FD65535
		Специальный SFD	50000 точek SFDO~SFD49999
		Защищённый FS	48 точек FSO-FS47

[^15]
Серия XLME

В дополнение ко всем функциям малогабаритных ПЛК серии
XDM, эта серия имеет более высокую скорость обработи ХDМ, эта серия имеет более высокую скорость обработки
данных (примерно в з раза выше, чем у ХDМ), больший объем данных (примернов в раза выше, чем у XDM), бопьший объем
встоенной памтти (1Б), ппдддерживает до 10 импульных выходов, оснащена портами RS232, RS485 и двумя RJ45.
возможно подключение правого модуля расширения и левого модуля расширения.
(1) Объём встроенной памяти 1 MB
(2) Последовательное управление вводом-выводом
(3) Максимум 576 точек ввода/вывода
(4) Базовые команды 0.02~0.03м
5) Порты RS232, RS485, RJ45
6) Полевая шина X-NET

8 $4 \sim 10$ входов высокоскоростного счётчика (одна фаза -80KHz, AB фазы - 50 KHz) (9) Линейнааякруговая иостного с
(1) Функция «follow-up"

Технические характеристики

Продукты серии XLME-		32 T	64710
Вводы/выводы основного блока	Bcero точек	32	64
	Точек ввода	16	32
	Точек вывода	16	32
Максимальное количество точек		544	576
Высокоскоростное позиционирование	Общие импульсные выходы	4 ocn	10 осей
	Дифференциальные	-	.
Высокоскоростной вход	Одна фаза/AB фазы	4 канапа	10 канапов
	Режим ввода	OC	OC
Возможности расширения	Правый модуль	16	16
	Певый модупь	1	1
	BD-плата	.	.
Прерывание	Внешнее прерывание	10	10
	Прерывание по времени	20	
	Другие прерывания	Высокоскоростное прерывая	
Функции связи	Порты связи	1 порt RS232, 1 поpt RS485,	
	Протоколы связи	Стандартная связьМоdbus	aтe, свяяь Ethernet
Функция шины		Попевая шина X -NET	
Широтно-импульсная модуляция (ШИМ)		Поддерживает	
Измерение частоты		Поддерживает	
Точное время		26 точек ЕТо-ET25 (Можно	
Управление несколькими станциями		Поддерживает	
Режим выполнения программы		Режим циклического сканир	
Метод программирования		Инструкция, лестничная диа	
Хранение данных без внешнего питания		Применяетоя FlashROM с ли	
Скорость обработки базовых команд		0.01~0.03мкс	
Объём встроенной памяти (скрытая загрузка)		1 MB	

Перечень моделей серии XLME

Модель						
Питание переменным током				Питание постоянным током		
	Релейный выход	Tранзисторный выход	Смешанный транзисторнорелейный выход	Релейный выход	$\underset{\substack{\text { Tранзисторный } \\ \text { выхор }}}{ }$	Смешанный транзисторнорелейный выход
Tип NPN	.	.	-	-	XLME-32T4	-
	-	-	.	.	XLME-64T10	-

Продукты серии хLME-			$32 T 4$	64710
Функция защиты			6-битное шифрование ASCII паропя, скрытая загрузка	
Функция самодиагностики			Самодиагностика при вклочении, таймер мониторинга, проверка синтаксиса	
Часы реального времени			Встроенные часы, питание от литиевой батареи, с памятью отклочения питания	
Внешняя SD-карта			1280 точек: X0~×77,X10000~×11777, X20000~X20177, X30000~X30077	
	Bxoдноe реле (X)			
	Выходное реле (Y)		1280 точе: $\mathrm{Y} 0 \sim Y 77, Y 10000 \sim Y 11777, Y 20000 \sim Y 20177, Y 30000 \sim Y 30077$	
	$\begin{array}{l}\text { Bспомогатель- } \\ \text { ное реле }\end{array}$	Основное М	70000 точек M0~M69999	
		При выккююченном питании HM	12000 точек HMO-HM11999	
		Специальное SM	5000 точек SMO-SM4999	
	Поток	Основной S	8000 точек S0~ S 7999	
		При выккпоченном питании HS	1000 точee HSO~HS999	
	Таймер	Характеристика	Tаймер с шагом $100 \mathrm{~ms}: 0.1 \sim 3276.7 \mathrm{~s}$,таймер с шагом $10 \mathrm{~ms}: 0.01 \sim 327.67 \mathrm{~s}$,таймер с шагом$1 \mathrm{~ms}: 0.001 \sim 32.767 \mathrm{~s}$	
		Основной Т	5000 точек Т0~T4999	
		При выккпоченном питании HT	2000 точeк HTO-HT 1999	
	Подсчёт	Характеристика	16-bit счетчик: 0~32767 32-bit счетчик: -2147483648~+2147483647	
		Основной С	5000 точек С0-C4999	
		При выключенном питании HC	2000 точек HCO~HC1999	
	Специальная катушка для инструкции WAIT		32 точки SEMO~SEM31	
	Регистр данных	Основной D		
		При выключенном питании HD	25000 точек HDO HD24999	
		Специальный SD	5000 точек SDO-SD4999	
	PeructpFlashROM	При выключенном питании FD	8192 точек FDO~FD8191	
		Специальный SFD	6000 точек SFDO~SFD5999	
		Защищённый FS	48 точeк FSO~FS47	

[^16]
Серия XLH

Обладает большинством функций XLME, имеет большую программную емкость и более высокую скорость обработк
данных, поддерживает связь Ethernet, шину EtherCAT, данных, поддерживает связь Ethernet, шину EtherCAT
команды управления движением, такие как интерполяция функция «fоІlow-ир», правый модуль расширения и левый модуль расширения ED
(1) Объём встроенной памяти $2 \sim 4$ МВ
(2) Максимум 542 точки ввода/вывод
(4) Порты RS232, RS 485 , RJ45
(5) Связь через Ethernet
(6) Полевая шина X -NET
${ }^{\text {® }} 4$ в высокоскоростных импульсных выхода по 100 КН
(9) 4 входа высокоскоростного счётчика (до 200 KHz)
(1) Функция «follow-uр"
(12) 1 3-х осевая линйинная/круггвая интерполяция
(1) 16 канальный электронный САМ (не поддерживается моделью XLH-24A16L)

Технические характеристики

Продукты серии хLᄂ-		24416	24A16L	30А32
Вводы/выводы основного блока	Bcero точек	24	24	30
	Точек ввода	12	12	14
	Точек вывода	12	12	16
Максимальное количество точек		536	536	542
Высокоскоростное позиционирование	Общие импульсные выходы	4 ocn	4 ocn	4 оси
	Дифференциальные	-	.	.
Высокоскоростной вход	Одна фаза/АВ фазы	4 канала	4 канала	4 канала
	Режим ввода	OC	OC	2 канала дифференциального сигнала + 2 каналаОС
Возможности расширения	Правый модуль	16		
	Певый модупь	1		
	BD-плата	-		
Прерывание	Внешнее прерывание	10		
	$\begin{aligned} & \text { Пррерывание по } \\ & \text { ввемени } \end{aligned}$	20		
	Другие прерывания	Высокоскоростное прерывание, импульсное прерывание		
Функции связи	Порты связи	1 порт RS232, 1 порт RS 485,2 порта RJ45		
	Протокопы связи	Стандартная связь МоdbusASCII/RTU, связь в свободном формате, связь Ethernet, связь CAN (поддерживает только 30А32)		
Функция шины		Управпение по шине EtherСАТ XLH-24A16, XLL--30ААЗ2: поодеррживают управление движением по одной оси, группе осей и функциио эпектронного САМ аия движенем по одной оси, группы осей (не поддерживвет функциио электронного САМ)		
Широтно-импульсная модупяция (ШИМ)		$\cdot{ }^{-}$		
Измерение частоты		-		
Точное время		26 точек ET0-ET25 (Можно испопьзовать топько четные чиспа)		
Управление несколькими станциями		Поддерживает		
Режим выполнения программы		Режим циклического сканирования		
Метод программирования		Инструкция, лестнииная диаграмма, язык программирования Си		
Хранение данных без внешнего питания				
Скорость обработки базовых команд		0.02-0.05мкс	$0.02 \sim 0.05 \mathrm{nkc}$	0.01~.03мкс
Объём всттоенной памяти (скрытаязагрузка)		2 MB	2 MB	4 MB

Перечень моделей серии XLH

Модель						
Питание переменным током				Питание постоянным током		
	Релейный	Tраннисторный вихоо	Смешанный транзисторнорелейный выход	Релейный	транзисторный выход	Смешанный транзисторнорелейный выход
Tип NPN	-	-	-	-	XLH-24A16	-
	.	-	-	-	XLH-24A16L	-
	.	-	.	-	XLH-30A32	\cdot

[^17]
Высокопроизводительный ПЛК с CODESYS

Серия XSLH

Небольшой плк, разработанныи на базе платформы Codesys Может значительно повысить эффективность программирования
и поддерживает спецификацию программирования PLCopen и поддерживает спецификацию программирования PLCopen использованы для разработки собственных функциональных
блоков ибиблиотек команд.
(1) Управление движением по EtherCAT
(2) Поддержка удалённого управления входами/выходами по EtherCAT
(4) Связь по шине Ethernet
5) Загрузка команд в процессе работы (Онпайн загрузка)

Технические характеристики

Продукты серии XSLH-		30A32
Вводы/выводы основного блока	Bсего точек	30
	Точек ввода	14
	Точеквывода	16
Максимальное количество точек		542
Высокоскоростное позиционирование	Общие импульсные выходы	4 ocn
	Дифференциальные	-
Высокоскоростной вход	Одна фаза/АВ фазы	4 канала
	Режим ввода	2 канала дифференциального сигнала +2 канала $O C$
Возможности расширения	Правый модуль	16
	Левый модуль	1
	BD-ппата	-
Прерывание		10
Фуккции связи	Порты связи	1 поpt RS232, 1 поpt RS 485,2 nopra $\mathrm{RJ45}$
	Протоколы связи	Стандартная связь Modbus ASCIIRTU, связь Ethernet, связь CAN
Функция шины		Управпение шиной EtherСАТ (маккимум 32 узла)
Метод программирования		ST, SFC, FBD, CFC, LD \quad IL
Основной прццесоор		Cortex-А8, доминируощая частота 1 ГГи
Возможности пользовательской программы		32MB
Объем данных	Общие	30MB
	Хранение данных без	2MB

Общие характеристики базового блока

Основные характеристики

Характеристики	Значение
Напряжение изолячии	Более DC500V 2M Ω
Шумозащищённость	
Условия окр.среды	Без коррозийных и горючих газов
Рабочая температура	$0^{\circ} \mathrm{C}-55^{\circ} \mathrm{C}$
Влажность окр.среды	5\%RH~95\%RH (6ез конденсата)
установка	Непосредственный монтаж или на рейку
Заземление	Третий вид заземления (не в одну линию с высокоточным оборудованием)

Характеристики входов

Характеристики блока питания

Характеристики	Значение
Номинапьное напряжение	DC24V
	DC21.6V 26.4
Входной ток	120 mA DC24V
Допустимое время	10ms DC24V
Токимпульса	10A DC26.4V
	15W (16 точек) / 30 W (24 и более точек)
Питание датуика	$24 \mathrm{VDC} \pm 10 \% 16$ точек - max 200mA, 32 точек - max 400 mA

 | Maxc. чactora | 1 MHz |
| :--- | :--- | Изоляция цепи Оптопара Ооображение Оптопара Отображение Светодиод горит,

Характеристики выходов

Внешнй источникпттаня		Ниже AC250V, DC30V
Изоляция цепи		Механическая
Индикатор действия		Светодиод горит
Макс. нагрузка	Резистввая	3 A
	Индустинная	80VA
	Ламповая	100w
Минимальная нагрузка		DC5V 10m
Времяотклика	выкл \rightarrow вкл	10 ms
	вкл \rightarrow выкл	10 ms

Характеристики последовательных портов связи (RS232/RS485)

Характеристики	Параметры
Режим связи	Полудуплекс
Скорость передачи данных	4800bps, 9600bps, 19200bps (по умолчанию), 38400bps, 57600bps, 115200bps
Тип данных	Бит данных: 5, , , 7, 8 (по умолч.), 9. Стоповый бит: 1 (по умолч.), 1.5, 2. Чётность: нет, нееттный, чётный (по умолч.)
Режим	RTU (по умолчанию), ASCII, свободный формат
Номер станции	1~255 (по умолчанию 1)
Задержка перед отправкой	$1 \sim 100 \mathrm{~ms} \mathrm{(по} \mathrm{умолчанию} \mathrm{3ms)}$
Задержка ответа	1~1000ms (по умолчанию 300 ms)
Кол-во повторных попыток	1~20 раз (по умолчанию 3 раза)

Модули расширения

Для удовлетворения потребностей управления большим количеством серводвигателей, плК серии XL могут быт контроля температуры и левым модулем расширения. Основной корпус может расширяться $10 \sim 16$ различными типами правых модулей расширения и одним левым модулем расширения ED .

Левый модуль расширения ED
Аналоговый и температурный модули Преобразователи ЦАП/АЦІП с функцией

Модуль связи
CANopen и портами RS232.

Правый модуль расширения
Подули расширения ввода/вывода Для увеличения количества точек вввда/вывода.
Каждыы модупь вкпочает от 8 до 32 точек. Базовыи
 Транзисторные (T) и релейные (R) выходы Аналоговый и температурный модул Преобразователи цАП/АЦП. Благодаря модулюо расширения аналогового ввода/вывода и модуля
контропя температуры ПЛК серии ХD может осущ ствлять управление такими процессами, как изменен од жидкости ид
 точностью рееууир
четыре параметра.
Кажыый канал модуля управления температурой мож

Правые модули расширения

Модули расширения ввода/вывода
иппользуется для увеличения количества точек вода/вывода, когда количество точек основного пока не соответствует задачам. Плк серии XL можно расширить до 544 точек вода/вывода.

Модули цифрового ввода

тип		Описание функции	Спецификация
NPN-8xoA	PNP-BxoA		
XL-E16X	XL-E16PX	16 каналов цифрового ввода	Питание: 24В пост. тока Время входного фильтра 1~50 мс опционально Способ внешнего подключения: 16X, 32X: встроенная клеммная колодка $32 \mathrm{X}-\mathrm{A}:$ требуется внешний разъём Способ подключения: такой же, как у блока ПЛК
XL-E32X	XL-E32PX	32 канала цифрового ввода	
XL-E32X-A	-	32 канала цифрового ввода	

Модули с цифровым выводом

Модель	Описание функции	Характеристика
XL-E16YR	16 каналов релейного вывода	Модуль не требует внешнего источника питания :: релейный выход -: транззисторный вьход Время опклика R: менее 10 мс время откпика $\mathbf{~}$ Макс. нагрузка R: резистивная 3 A , индуктивная 80 BA Мак. нагрузка T: макс. выходной ток каждой точки $0,3 \mathrm{~A}$ Способ внешнего подключения. $16 \mathrm{YR}, 16 \mathrm{YT}, 32 \mathrm{YT:} \mathrm{встроенная} \mathrm{клеммнная} \mathrm{колодка}$ 16YT-A, 32YT-A: требуется внешний разъём Способ подкпючения: такой же, как у блока плК
XL-E16YT	16 каналов транзисторного вывода	
XL-E16YT-A	16 каналов транзисторного вывода	
XL-E32YT	32 канала транзисторного вывода	
XL-E32YT-A	32 канала транзисторного вывода	

Модули с цифровыми вводами/выводами

Модель		Описание функции	Характеристика
NPN-ввод	PNP-ввод		
XL-E8X87R	XL-E8PX8YR	8 цифровых каналов ввода, 8 релейных каналов выввда	Питание: 24 B пост. тока Время входного фильтра $1 \sim 50$ мс опционально
XL-E8X8YT	XL-E8PX8YT	8 цифровых каналов ввода, 8 транзисторных ханалов вывода	Время отклика R: менее 10 мс Время отклика T: менее 0,2 м
XL-E16x16YT	XL-E16PX16YT	16 цифровых каналов ввода, 16 транзмсторных канала вывода	Макс. нагрузка T : макс. выходной составляет 0,3 А
XL-E16X16YTA		16 иифровых ханалов ввода, 16 транжисторных канала вывода	16X16ҮT-A: требуется внешний терминальный блок Способ подключения: такой же, как у блока ПЛК

одули с цифров

Основные характеристики

Характеристики	Значения
Окружающая среда	Без коррозийных газов
Рабочая температура	$0^{\circ} \mathrm{C} \sim 55^{\circ} \mathrm{C}$
Температура хранения	$-20 \sim 70^{\circ} \mathrm{C}$
Рабочая влажность	5~ 95\%RH
Влажность хранения	5~95\%RH
Установка	Можно закрепить винтами МЗ или непосредственно установить на напрравляющую DIN46277 (ширина 35 мм)

Модуль расширения

Аналоговый и температурный модуль расширения
Преобразует цифровой сигнал в аналоговый и наоборот. Благодаря модулю расширения аналогового вввда/вывода и модулюю контроля температуры, , лКК сери $\times \mathrm{L}$
может осуществлять управление такими процессами, как изменение температуры и давления, расход жидкости и др.
Благодаря функции РID-регулирования, бпок можно использовать более широко $п$ гибко $о$
более высокой точностьо регулирования. Необходимо задать только четыре параметра.
 незавсимо, имеет
команд FROM иTO.

Модуль контроля температуры (тип PT\&TC)

Модель	Каналы	Входной сигнал	Характеристики
XL-E4PT3	4	$\mathrm{Pt100}$ платиновый термистр Диапазон температуры: $-100^{\circ} \mathrm{C} \sim 500^{\circ} \mathrm{C}$ (чифровой выходной диапазон значений: - $1000-5000$ 6 бит со знаком, двоичный	Источник питания: $\mathrm{DC} 24 \mathrm{~V} \pm 10 \%, 50 \mathrm{~mA}$ Точность регулирования $\pm 0.5 \%$ Скорость преобразования TC $420 \mathrm{mc} / 4$ канала Коэффициент фильтра РT 0~254 4 группы параметров ПИД, поддержка функции самонастройки Период выборки опционально
XL-E4TC-P	4	Типы термопар: K, S, E, N, B, T, J и R Температурный диапазон $0^{\circ} \mathrm{C} \sim 1300^{\circ} \mathrm{C}$ (для типа К) (чифровой выходной диапазон эначений: О~13000, 16 бит со знаком, двоичный)	

Модуль с аналоговым выводом (тип AD)

Модуль	Каналы	Входной сигнал	Характеристики
XL-E8AD-A	8	Выходной ток: 0~20mA/4~20mAl-20~20mA	Источник питания: $\mathrm{DC} 24 \mathrm{~V} \pm 10 \%, 150 \mathrm{~mA}$ Скорость преобразования: 2 мс/канал Разрешение $1 / 16383$ (14 бит)
XL-E8AD-V	8	Выходное напряжение: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} /-5-5 \mathrm{~V} /-10 \sim 10 \mathrm{~V}$	Добавлен бит разрешения канала Канал AD имеет функции обнаружения короткого замыкания, обрыва цепи и превышения диапазона

Модуль с аналоговым выводом (тип DA)

Модуль	Каналы	Входной сигнал	Характеристики
XL-E4DA	4	Выходное напряжение: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} /-5 \sim 5 \mathrm{~V} /-10 \sim 10 \mathrm{~V}$ (внешний резистор нагрузки $2 \mathrm{k} \Omega \sim 1 \mathrm{M} \Omega$) Выходной ток: $0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$ (внешний резистор нагрузки 500Ω)	Источник питания: $\mathrm{DC24V} \pm 10 \%, 150 \mathrm{~mA}$ Скорость преобразования 2 мс/канал Разрешение 1 14095 (12 бит) Комплексная точость $\pm 1 \%$ Добавппен бит разрешения канала

Аналоговый модуль ввода/вывода (тип nADmDA)

Модуль	Каналы		Каналывводаввывода	Характеристики
	Ввода	Вивода		
XL-E4AD2DA	4	2	Входной ток: $0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA} /-20 \sim 20 \mathrm{~mA}$ Входное напряжение: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} /-5 \sim 5 \mathrm{~V} /-10 \sim 10 \mathrm{~V}$ Выходное напряжение: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} /-5 \sim 5 \mathrm{~V} /-10 \sim 10 \mathrm{~V}$ внешний резистор нагрузки $2 \mathrm{k} \Omega \sim 1 \mathrm{M} \Omega$) Выходной ток: $0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$ (внешний резистор нагрузки 500Ω)	Источник питания $\mathrm{DC} 24 \mathrm{~V} \pm 10 \%, 150 \mathrm{~mA}$ Скорость преобразования 2 ме/канал Воыооное разрешение $1 / 4095$ (12 -бит) Коэффициент фильтрации AD $0 \sim 254$ Абсолютная точность $\pm 1 \%$ Добавлен бит разрешения канала КаналAD имеет функцию обнаружения короткого замыкания, обрыва цепи и превышения диапазон

Весовой модуль расширения

Используется для преобразования аналогового сигнала ензодатчика в цифровой сигнал. Весовой модуль обладае
преимуществами динамического взвешивания, мапого объема реимуществами динамического взвешивания, малого обьема, ироко применяется для контроля взвешивания сыпучих тел и химической промышленности.
Новый алгоритм, оптимизированная аппаратная система, боле
быстрый и точный контроль взвешивания
2) Аналоговые сигналыынапряжения от 4 тензодатчиков могут быть

Высокопрооизводительный АЦП, скорость выборки до 450 раз/с
(4) Точностр отображения до $1 / 300000$

Функция автоматического отслеживания нуля
(6) Данные в реальном времени обмениваюотяя с плк на высокой

Характеристика	Значение
Модель	XL-E1WT-D, XL-E2WT-D, XL-E4WT-D
Диапазон аналогового ввода	DC-20~20mV
Фактическое разрешение	$1 / 8388607$ (23 bit)
Точность отображения	1/500000
Нелинейность	0.01% F. S
Скорость преобразования	$150 \mathrm{pa3} / \mathrm{c}, 300 \mathrm{pa3} / \mathrm{c}, 450 \mathrm{pa3} / \mathrm{c}$
Источник питания	DC24V $\pm 10 \%$
Питание тензздатчика	$5 \mathrm{VDC} / 12$

Левый модуль расширения ED

Левый модуль расширения ED серии XL имеет функции АЦП/LАП преобразования, измерения температуры, связь RS232
RS485. К базовому бпоку серии XL можно подкпючить 1 модуль ED (XL1 не поддерживает функцию расширения).

Аналоговый и температурный модуль расширения ED

Модель	Сигнал ввода/вывода	Характеристики
XL-4AD-A-ED	4 входных канала, ток: $0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$	Источник питания модуля: $\mathrm{DC} 24 \mathrm{~V} \pm 10 \%, 150 \mathrm{~mA}$ Скорость преобразования: 10 мс (все каналы)
XL-4AD-V-ED	4 входных канала, напряжение: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V}$	
XL-4DA-A-ED	4 выходных канала, ток: $0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$	
XL-4DA-V-ED	4 выходных канала, напряжение: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V}$	АЦП/ЦАП: Разрешение входного сигнала тока/напряж 1/4095 (12 бит) Разрешение выхода по току/напряжению: (10-бит) Ком Коэффициент фильтра АЦП: 0-254 PT: Диапазон температур: $-100 \sim 500^{\circ} \mathrm{C}$ Цифровой выходной диапазон: -1000~5000 Коэффициент фильтра РТ: 0-254 Разрешение температурного входа: $0.1^{\circ} \mathrm{C}$ от полной шкалы
XL-2AD2DA-A-ED	2 входных канала, ток: $0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$ 2 выходных канала, ток: $0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$	
XL-2AD2DA-V-ED	$\begin{aligned} & 2 \text { входных канала, напряжение: } 0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} \\ & \text { 2 выходных канала, напряжение: } 0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} \end{aligned}$	
XL-2AD2PT-A-ED	2 входных канала, ток: $0 \sim 20 \mathrm{~mA} / 4 \sim 20 \mathrm{~mA}$ 2 входных температурных канала: РТ100 термистор	
XL-2AD2PTV-VED	$\begin{array}{\|l\|} \hline 2 \text { входных канала, напряжение: } 0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V} \\ 2 \text { входных температурных канала: РТ100 термистор } \\ \hline \end{array}$	
XL-2PT2DA-A-ED	2 входных температурных канала: PT100 термистор 2 выходных канала, ток: 0-20mA/4~20mA	
XL-2PT2DA-V-ED	2 входных температурных канала: РТ100 термистор 2 выходных канала, напряжение: $0 \sim 5 \mathrm{~V} / 0 \sim 10 \mathrm{~V}$	

Блок расширения связи ED

Модель	Описание
XL-NES-ED	Для расширения плк серии XL применяются порты RS232 или RS485. Одновременная работа интерфейсов RS232 и RS485 не предусмотрена. Последовательный порт СОМз.
XL-cobox-ED	Модуль связи CANopen. (1) Скорость связи до 1 Mbps (2) 64 узла связи (3) Поддержка режимов ведущего и ведомого устройств (4) Повышена надёжность системы (5) «Хартбит» защита (6) Простая установка

Аксессуары

Перечень комплектующих для основного блока

Название	Модель	Описание	Изображение
Кабель связи и программирования	xVP/DVP	Дпя связи и загрузки/выгрузки программ.	C
Переходник USB/DB9	UsB-com	Для перехода с разьёма DB9 (мама) на USB-порт.	
USB-кабель принтера	JC-UA-15	Специальный кабель загрузки для продуктов Xinje (кроме продуктов без интерфейса USBB), Черный, с двойными магнитными кольцами для повышения защиты от помех.	- 5
Кабель-переходник с DB9 на RS485	JC-EB-Length	Кабель DB9 - RS485 для связи Rs485 между операторской панелью и Плк. Бывает трёх видов: JC-EB-3 (3м), JC-EB-5 (5м), JC-EB-8 (8м)	
Кабель полевой шины X-NET	JC-EA-Length	Поставляется в семи вариантах: JC-EA-1 (1m), JC-EA-05 (5m), JC-EA-10 (10m), JC-EA-20 (20m), JC-EA-30 (30m), JC-EA-50 (50m), JC-EA-100 (100m)	

Специальный блок питания модуля
XL-P50-E
Незавсиимое электропитание модуля XL обеспешввает нормалыную работу
ПЛК, создавая хорошую надежную систему электропитания. $\frac{\text { Характеристики }}{\frac{\text { AC85-265V }}{}}$
$\frac{\text { AC85-265V }}{\text { DC24V }}$
$\frac{2 \mathrm{~A}}{}$
$0^{\circ} \mathrm{C} \sim 60^{\circ} \mathrm{C}$
5% RH $\sim 95 \%$ RH
Непосредственный монтаж ипи
Третий видзаный монтаж или на рейи
высокотонного оборуддования)

Внешняя клеммная колодка для серии XL

Модель бпока	Модель коподки	Соединительный кабель
XL5-64T10	JT-E32X+JT-E32YT	
XL5E-64T6	JT-E32X+JT-E32YT	
XL5E-64T10	JT-E32X+JT-E32YT	JC-TE32-NN05 (0.5m)
XL-E32X-A	JT-E32X	JC-TE32-NN10 (1.0m)
XL-E16X16YTA	JT-E16X16YT	JC-TE32-NN15 (1.5m)
XL-E32YT-A	JT-E32YT	

Адаптер для загрузки прогамм
JD-P03
(1) Может
 -25 и USB-Сом (версия прошивки Н2).

 прошивка пЛК версии 3.4 и выше
(3)

Терминальный резистор серии XL

 XL-ETR

Габаритные размеры

Базовый блок ПЛК серии XL

$$
\begin{aligned}
& \\
& \begin{array}{l|l|}
\hline \text { Точки } & 16 \text { точек } \\
\hline
\end{array}
\end{aligned}
$$

Соответствующая модели

Cepии	XL5E	XLME

Точки 32 точки

[^18]	Cepии	XLH
Tочки	24 точки	

Соответствуюцая модель

Cepии	XL5	XL5E	XLME

Точки	64 точки

Соответствующая модел
Серии XLH XSLH

	Серии
Tочки	XLH
0	

Габаритные размеры

Правые модули расширения серии XL

Левый модуль расширения ED серии XL

Модуль блока питания XL

Внешняя клеммная колодка JT

[^0]:

[^1]:
 ©3

[^2]:

[^3]:

[^4]:

 .

[^5]:

[^6]:

[^7]: Q (ane

[^8]:

[^9]:

[^10]: \qquad

[^11]:

[^12]:

[^13]: \qquad

[^14]: \qquad

[^15]:

[^16]:

[^17]:

[^18]: Соответствующая модель

