
XS series PLCopen controller
User manual [Instruction] (XS Studio)

Wuxi XINJE Electric Co., Ltd.
Data No. PS05 20230109EN 1.0

Basic Description

 Thank you for purchasing the Xinje XS series PLCopen standard controller.
 This manual mainly introduces the relevant usage of XS series PLCopen standard controller instructions.
 Before using the product, please read this manual carefully and program it on the premise of fully

understanding the content of the manual.
 Please deliver this manual to the end user.

User Information

 Only operators with a certain level of electrical knowledge can perform wiring and other operations on the
product. If there are any areas where the use is unknown, please

 Consult our company's technical department.
 The examples listed in manuals and other technical materials are for user understanding and reference only,

and do not guarantee certain actions.
 When using this product in combination with other products, please confirm whether it meets relevant

specifications, principles, etc.
 When using this product, please confirm whether it meets the requirements and is safe.
 Please set up backup and safety functions on your own to avoid potential machine malfunctions or losses

caused by the malfunction of this product.

Declaration of Responsibility

 Although the content in the manual has been carefully checked, errors are inevitable and we cannot
guarantee complete consistency.

 We will regularly check the content in the manual and make corrections in subsequent versions. We
welcome your valuable feedback.

 The content described in the manual is subject to change without prior notice.

Related manuals

Please refer to the following manual for hardware related and software applications of the XS series PLC.
 User Manual for XS Series PLCopen Standard Controller [Hardware]
 User Manual for XS Series PLCopen Standard Controller [Software]

i

Catalog

1. BASIC INSTRUCTIONS ..1

1-1. BIT LOGIC INSTRUCTIONS ..1
1-1-1. Basic bit logic instructions ..1
1-1-2. Set priority and reset priority trigger instructions ..5
1-1-3. Data unit type ..6

1-2. TIMER ..7
1-2-1. Pulse timer TP ...7
1-2-2. Power on delay timer TON... 7
1-2-3. Power off delay timer TOF... 8
1-2-4. RTC ... 8

1-3. COUNTER .. 9
1-3-1. Up counter CTU ..9
1-3-2. Down counter CTD ...9
1-3-3. Up/down counter CTUD... 10

1-4. DATA PROCESSING INSTRUCTIONS .. 11
1-4-1. Selection commands .. 11
1-4-2. Compare Instructions ..14
1-4-3. Shift instruction ...15

1-5. OPERATION INSTRUCTIONS ..21
1-5-1. Assignment instruction ..21
1-5-2. Arithmetic operation instructions ... 21
1-5-3. Mathematical operation instructions ..25
1-5-4. Address operation instruction ...30
1-5-5. Data conversion instructions .. 33

2. SPECIAL INSTRUCTIONS ... 40

2-1. XSA SERIES HIGH SPEED COUNT INSTRUCTIONS ...40
2-1-1. Function overview ...40
2-1-2. Function block .. 40
2-1-3. Parameter settings .. 54

2-2. XS SERIES HIGH SPEED COUNT INSTRUCTIONS ... 56
2-2-1. Function overview ...56
2-2-2. Function block .. 56
2-2-3. Parameter configuration ...60
2-2-4. Application example ..61

2-3. EXTERNAL INTERRUPT AND COMPARE CONSISTENT INTERRUPT INSTRUCTIONS ... 62
2-3-1. Function overview ...62
2-3-2. Function block .. 62
2-3-3. Parameter configuration ...66
2-3-4. Application example ..67

2-4. PID INSTRUCTIONS ... 69
2-4-1. Command format .. 69
2-4-2. Related variables .. 69
2-4-3. Function description ... 70

ii

2-4-4. Application example ..72
2-5. SYSTEM LIBRARY .. 79
2-5-1. Function overview ...79
2-5-2. Function block introduction ..79
2-5-3. Parameter configuration ...89

2-6. ECAT_FROMTO... 91
2-6-1. Function overview ...91
2-6-2. Function block introduction ..91
2-6-3. Parameter configuration ...93
2-6-4. Application ..95

3. MOTION INSTRUCTIONS ... 96

3-1. SINGLE AXIS ..96
3-1-1. Single axis instruction overview ... 96
3-1-2. Single axis instructions ... 97
3-1-3. Single axis function application ..144

3-2. AXIS GROUP FUNCTION ... 145
3-2-1. Axis group instruction ...145
3-2-2. Axis group instructions ... 146
3-2-3. Axis group function application .. 199

3-3. CAM FUNCTION ..201
3-3-1. CAM instruction list ..201
3-3-2. CAM instructions .. 202
3-3-3. CAM function application ...229

APPENDIX ...232

1

1. Basic instructions
1-1. Bit logic instructions

1-1-1. Basic bit logic instructions

Instruction Instruction icon Function

AND Operator AND

OR Operator OR

NOT Operator NOT

XOR Operator XOR

Basic bit logic instructions include AND, OR, NOT, and XOR. In XS Studio, functions can be divided into bit
logic operation and Boolean logic operation.

 Bit logic operation: perform Boolean logic operation on corresponding bits of two integer data one by
one, and return compatible integer results.

 Boolean logic operation: perform logical operation on two Boolean type data.

1-1-1-1. Bit AND

Function: The bit AND operation instruction compares the corresponding bits of two integers. When the
corresponding bits of two numbers are both 1, the corresponding result bit returned is "1". When the
corresponding bits of two integers are both "0" or one of the bits is "0", the corresponding result bit is returned
as "0".

AND logic relationship table
Input 1 Input 2 Result

0 0 0
0 1 0
1 0 0
1 1 1

Example: Create a POU and declare two integers
The variables iVar1 and iVar2 are assigned values of 1 and 85, and bit AND operations are performed on these
two variables to output the results to iResult. The specific implementation code is as follows:

VAR
iVar1:INT:=1;
iVar2:INT:=85;
iResult:INT;

2

END_VAR

iResult:=iVar1 and iVar2;

The decimal number 1 corresponds to a binary number of 0000 0001, and the decimal number 85 corresponds
to a binary number of 0101 0101. According to the definition of bit AND operation, each independent bit is
subjected to an AND operation one by one, resulting in the final result of 0000 0001, which is a decimal value
of 1.

1-1-1-2. Boolean AND

Function: Boolean AND operation is used to calculate the AND results of two Boolean expression. When the
result of two Boolean expression is true, it is returned as true. If one of them is false, it is returned as false.
Example: Create a POU and use the Boolean AND operation to determine the return value of the operation. The
code is as follows:

VAR
B1:BOOL;
B2:BOOL;
B3:BOOL;

END_VAR

B3:=B1 AND B2;

When both B1 and B2 are true, the running result of the program is B3 to be true.

1-1-1-3. Bit OR

Function: The bit OR operation instruction compares the corresponding bits of two integers. When one of the
corresponding bits of two numbers is "1" or both are "1", the corresponding result bit is returned as "1". When
the corresponding bits of two integers are both "0", the corresponding result is returned as "0".

OR logic relationship table
Input 1 Input 2 Result

0 0 0
0 1 1
1 0 1
1 1 1

Example: Create a POU, perform bit OR on variables iVar1 and iVar2, and perform bit OR on these two
variables to output the results to iResult. The specific implementation code is as follows:

VAR
iVar1:INT:=1;
iVar2:INT:=85;
iResult:INT;
END_VAR

iResult:=iVar1 OR iVar2;

3

The final running result of the program is 85.

1-1-1-4. Boolean OR

Function: Boolean OR operation instruction is used to calculate the OR result of two Boolean expression. When
one of the two Boolean expression returns true, the result is true. When the result of two Boolean expression is
false, the result is false.
Example: Create a POU and use the Boolean OR operation to determine the return value of the operation. The
code is as follows:

VAR
bResult:BOOL;
bVar1:BOOL;
iVar1:INT:=30;
END_VAR

bResult:=bVar1 OR (iVar1 <80);
Due to the initial value of iVar1 being 30, the condition of iVar1<80 is true, while the initial value of bVar1 is
"0", so it is false. The logical result of one true and one false OR is true. Therefore, the condition on the right
side of the equation is true, and the running result of the program is bResult being true.

1-1-1-5. Bit NOT

Function: Negate the logical string, changing the current value from "0" to "1" or from "1" to "0". The bit 'not'
operation instruction is to take variables or constants one by one as not.

NOT logic relationship table
Input Result
0 1
1 0

Example: Create a POU and use the bit NOT operation to determine the return value of the operation. The
specific code is as follows:

VAR
byVar1:BYTE:=1;
byVar2:BYTE;
END_VAR

byVar2:=NOT byVar1;

Due to the value of byVar1 being 1, converting it to binary yields 0000 0001. After performing bit negation, the
result is 1111 1110. The final output result is 254.

1-1-1-6. Boolean NOT

Function: Boolean "Not" operation instruction is used to calculate the result of a single Boolean expression.
When the input is true, the result is false. When the input is false, the result is true.

4

Example: Create a POU and use the Boolean 'not' operation to determine the return value of the operation. The
specific code is as follows:

VAR
bResult:BOOL;
bVar1:BOOL;
iVar1:INT:=30;
END_VAR

bResult:=NOT (80 < iVar1);

80<30 this proposition is false. After using the NOT instruction to negate the Boolean expression, the
result is true, so the final bResult is true.

1-1-1-7. Bit XOR

Function: Compare the corresponding bits of two integers using the bit XOR operation instruction. When the
corresponding bit of two integers is one "1" and the other is "0", the corresponding result bit returned is "1".
When the corresponding bits of two integers are both "1" or "0", the corresponding result bit is returned as "0".
Example: Create a POU, perform bit XOR on variables iVar1 and iVar2, and output the results. The specific
implementation code is as follows:

VAR
iVar1:INT:=1;
iVar2:INT:=85;
iResult:INT;
END_VAR

iResult:=iVar1 XOR iVar2;
The decimal number 1 corresponds to a binary number of 0000 0001, and the decimal number 85 corresponds
to a binary number of 0101 0101. According to the definition of the bit XOR operation instruction, the result is
84.
Bit XOR operation. Only when the input state of one contact is "1" and the input state of the other contact is "0",
the output is "1". If both contact states are "1" or "0" at the same time, the output is "0".

1-1-1-8. Boolean XOR

Function: Boolean XOR operation instruction is used to calculate the results of two Boolean expression. Only
when one expression is true and the other is false, the result returned by the expression is true. When both
expressions evaluate to true or false, the returned result is false.
Example: Create a POU and use the Boolean XOR operation instruction to determine whether the return value
is TRUE or FALSE. The specific implementation code is as follows:

VAR
bResult:BOOL;
bVar1:BOOL;
iVar1:INT:=30;
END_VAR

5

bResult:=bVar1 XOR (iVar1 <80);

The running result of the program is TRUE.

1-1-2. Set priority and reset priority trigger instructions

Instruction Instruction icon Function

SR
Set priority trigger: Set bistable trigger, set
priority

RS
Reset priority trigger: Reset bistable trigger,
reset priority

In a relay system, several pairs of contacts of a relay act simultaneously. In PLC, instructions are executed one
by one, and the execution of instructions is sequential, without any "simultaneous" instructions. So the setting
and reset commands for coil format have priority. The set and reset inputs of SR trigger and RS trigger are in
the same instruction, and the set and reset inputs are executed by the one below the instruction input. The SR
trigger is a "set priority" type trigger. When the set signal (SET1) and reset signal (RESET) are both 1, the
trigger ultimately enters the set state. The RS trigger is a "reset priority" type trigger. When the set signal (SET)
and reset signal (RESET1) are both 1, the trigger ultimately enters the reset state.

1-1-2-1. Set priority trigger SR

Function: Set bistable trigger, with set priority. Logical relationship: Q1=(NOT RESET AND Q1) OR SET1,
where SET1 is the set signal and RESET is the reset signal.
Syntax: When SET1 is "1", regardless of whether RESET is "1" or not, Q1 output is "1". When SET1 is "0", if
Q1 output is "1", once RESET is "1", Q1 output will immediately reset to "0". If Q1 output is "0", regardless of
whether RESET is "1" or "0", Q1 output remains "0".

SR status table
SET1 RESET Q1 output

0 0
Maintain the
original state

1 0 1
0 1 0
1 1 1

1-1-2-2. Reset priority trigger RS

Function: Reset the bistable trigger, with reset priority. Logical relationship: Q1=NOT RESET1 AND (Q1 OR
SET), where SET is the set signal and RESET1 is the reset signal.
Syntax: When RESET1 is "1", regardless of whether SET is "1" or not, Q1 output is "0". When RESET1 is "0",
if Q1 output is "0", once SET is "1", Q1 output is immediately set to "1". If Q1 output is "1", regardless of
whether SET is "1" or "0", Q1 output remains "1".

6

RS status table
SET RESET1 Q1 output

0 0
Maintain the
original state

1 0 1
0 1 0
1 1 0

1-1-3. Data unit type

Instruction Instruction icon Function

R_TRIG Rising edge trigger

F_TRIG Falling edge trigger

The edge detection instruction is used to detect changes in the rising edge (signal from 0-->1) and falling edge
(signal from 1-->0) of the BOOL signal. In each scanning cycle, the signal state is compared with its state in the
previous scanning cycle. If different, it indicates a jump edge. Therefore, the signal state from the previous
cycle must be stored in order to be compared with the new signal state.

1-1-3-1. Rising edge detection R_TRIG

Function: Used to detect the rising edge.
Syntax: When CLK changes from "0" to "1", the rising edge detector starts, and the Q output first changes from
"1" to "0", lasting for one PLC operation cycle. If CLK remains at "1" or "0" continuously, Q output remains at
"0".

1-1-3-2. Falling edge detection F_TRIG

Function: Used to detect the falling edge.
Syntax: When CLK changes from "1" to "0", the falling edge detector starts, and the Q output first changes
from "1" to "0", lasting for one PLC operation cycle. If CLK remains at "1" or "0" continuously, Q output
remains at "0".

7

1-2. Timer

Command Command icon Function

TP

Pulse Timer: Once IN becomes true, then Q
becomes true, and time will start counting in
milliseconds in ET until its value equals PT,
then Q is FALSE

TON

Power on delay timer: Once IN becomes
TRUE, the time will start counting in
milliseconds in ET until its value equals PT,
then Q is TRUE

TOF
Power off delay timer: When IN changes from
TRUE to FALSE and ET is equal to PT, Q is
FALSE, otherwise it is TRUE

RTC
Real-time clock: start at a given time and return
the date and time

1-2-1. Pulse timer TP

Function: Pulse timing.
Syntax: When the input IN of the timer changes from "0" to "1", the timer starts. Regardless of how the input IN
of the timer changes, the actual running time of the timer is the user-defined PT time. When the timer is running,
the output signal of its output Q is "1". The output terminal ET provides a timing time for the output terminal Q.
The timing starts from T#0s and ends at the set PT time. When the PT time expires, ET will maintain a timed
time until IN becomes "0". If the input IN has already changed to "0" before reaching the PT timing time, input
ET changes to T#0s, the timing of the PT. To reset the timer, simply set PT=T#0s.

1-2-2. Power on delay timer TON

Function: Power on delay timing.
Syntax: When the input IN of the timer changes from "0" to "1", the timer starts. When the timing time PT is
reached and the input signal IN is always maintained at "1", the output signal of the output Q is "1". If the input
IN signal changes from "1" to "0" before the timer's timing time is reached, the timer resets, and timer restarts at
the rising edge of the next IN signal. The output end ET provides a timing time, with a delay starting from T#0s
and ending at the set PT time. When PT arrives, ET will maintain a timed time until IN becomes "0". If the
input IN becomes "0" before reaching the PT timing time, the output ET immediately becomes T#0s. To restart
the timer, you can set PT=T#0s or IN=FALSE.

8

1-2-3. Power off delay timer TOF

Function: Power off delay timing.
Syntax: When the input IN of the timer changes from "0" to "1", the Q output signal of the timer is "1". When
the start input of the timer changes to "0", the timer starts. As long as the timer is running, its output Q remains
"1". When the timing time is reached, the output Q is reset. Before the timing time is reached, if the input of the
timer returns to "1", the timer is reset, The Q output signal at the output end remains at "1". The output end ET
provides a timing time, with a delay starting from T#0s and ending at the set timing time PT. When the PT time
expires, ET will maintain a timed time until the input IN returns to "1". If the input IN becomes "1" before
reaching the PT timing time, the output ET immediately becomes T#0s. To reset the timer, it is possible to set
PT=T#0s.

1-2-4. RTC

Function: Start at a given time and return the current date and time.
Syntax: RTC (EN, PDT, Q, CDT) means that when EN is "0", the output variable Q and CDT are "0", and the
relevant time is DT#1970-01-01-00:00:00. Once EN is "1", the time given by PDT will be set and counted in
seconds. Once EN is reset to FALSE, CDT will be reset to the initial value DT#1970-01-01-00:00:00. Please
note that the PDT time is only valid on the rising edge. The RTC timer parameter table is as follows:

Standard Timer Command Parameter Table
Name Definition Data type Explanation

EN Input variables BOOL Start enable

PDT Input variables DATE_AND_TIME Set the time and date to start

Q Output variables BOOL Status output

CDT Output variables DATE_AND_TIME Current count time and date status

9

1-3. Counter

Command
name

Command icon Function

CTU

Up counter: If RESET is TRUE, initialize to
0. When the rising edge of CU is always
increased by 1, once CV>=PV, Q will be set
to TRUE

CTD

Down counter: If LOAD is TURE, CV will
be set to the starting value given by PV.
Then set the load to FALSE manually, and
the CV value will decrease by 1 every time
the rising edge of the CD is approached. If
the CV value decreases to 0, Q will be set to
TRUE

CTUD Up/down counter

1-3-1. Up counter CTU

When the signal at the input end of the counter CU changes from state "0" to state "1", the current calculated
value is increased by 1 and displayed through the output end CV. On the first call (resetting the input RESET
signal state to "0"), the count at the input PV end is the default value. When the count reaches the upper limit of
32767, the counter will not increase again and the CU will no longer function.
When the signal status of the reset input RESET is "1", the CV and Q of the counter are both "0". As long as the
input RESET status is "1", the rising edge will no longer have any effect on the CU. When the CV value is
greater than or equal to PV, the output Q is "1". At this point, CV can still continue to accumulate, and output Q
continues to be output "1".
Incremental function block. The input variable CU, RESET, and output variable Q are of Boolean type, while
the input variable PV and output variable CV are WORD type. CV will be initialized to 0 if RESET is reset to
true. If CU has a rising edge that changes from FALSE to TRUE and CV increases by 1, Q will return TRUE,
so CV will be greater than or equal to the upper limit PV.

1-3-2. Down counter CTD

When the CD signal at the input end of the counter is changed from "0" to state "1", the current count value is
reduced by 1, and the CV displays the current value on the output end. When the first call is made (the load
input signal needs to be initialized, and it needs to be changed from "0" to state "1" and then to state "0" to make
the function block effective), the count at the input PV end is the default value. When the count reaches 0, the
count value will no longer decrease, CD no longer work.
When the load input signal LOAD is "1", the count value will be set to the PV default value. As long as the load

10

input signal LOAD status is "1", the CD rising edge of the input end will not work. When the CV value is less
than or equal to 0, the output Q is "1".

1-3-3. Up/down counter CTUD

When the CU signal at the counting input end changes from "0" to state "1", the current counting value is
incremented by 1 and displayed on the output CV.
When the signal status of the CD at the subtract count input changes from "0" to "1", the current count value is
subtracted by 1 and displayed on the output CV. If both inputs have rising edges, the current count value will
remain unchanged.
When the counting value reaches the upper limit value 32767, the rising edge of the counting input CU no
longer works. Therefore, even if there is a rising edge on the counting input CU, its value will not increase.
Similarly, when the count value reaches the lower limit value of 0, the subtracting input CD will not be effective.
Therefore, even if the subtracting input CD shows a rising edge, the count value will not decrease.
When the CV value is greater than or equal to the PV value, the output QU is "1". When the CV value is less
than or equal to 0, the output QD is "1".

Example: To create a POU, use the up/down counter CTUD. When bUp has a rising edge signal, the count value
increases, and when bDown has a rising edge signal, the count value decreases. bReset is used for data reset,
and the specific code is as follows:

VAR
bUp: BOOL;
bDown: BOOL;
bReset: BOOL;
bLoad: BOOL;
CTUD_0: CTUD;
END_VAR

CTUD_0(
CU:= bUp,
CD:= bDown,
RESET:=bReset ,
LOAD:= bLoad,
PV:= ,QU=> ,QD=> ,CV=>);

11

1-4. Data Processing Instructions

1-4-1. Selection commands

Command Command icon Function

SEL

Binary choice: When the selection switch is
FALSE, the output is the first input data,
and when the selection switch is TRUE, the
output is the second data

MAX Take the maximum value

MIN Take the minimum value

LIMIT

Limit value: If the IN value is higher than
the Max upper limit, the result is Max. If
the value of IN is lower than the lower limit
of Min, the result is Min

MUX

Multiple Choice: MUX selects the Kth
value from a set of values. The first value is
K=0. If K is greater than the number of
other inputs (n), XS Studio passes the last
value

1-4-1-1. Binary choice instruction SEL

Function: select one of the two input data as the output through the selection switch. When the switch is FALSE,
the output is the first input data, and when the switch is TRUE, the output is the second data.
Grammar: Its textual language syntax format is as follows:

OUT := SEL(G, IN0, IN1)
The parameter G must be a Boolean variable. If G is FALSE, the result of the returned value is IN0. If G is
TRUE, the result of the returned value is IN1. The parameter description is detailed in the table below:

Binary choice instruction SEL
Name Definition Data type Explanation
G Input variables BOOL Input selection bit
IN0 Input variables Any type Input data 0
IN1 Input variables Any type Input data 1

Return value Output variables Any type Output data

Example: To create a POU, when the input value bInput is FALSE, the output is 3, and vice versa, when it is
TRUE, the output is 4. The specific implementation program is as follows:

VAR
iVar1:INT:=3;

12

iVar2:INT:=4;
iOutVar: INT;
bInput: BOOL;
END_VAR

iOutVar:=SEL(bInput,iVar1,iVar2);

After running the program, the output result is 3.

1-4-1-2. Take the maximum value MAX

Function: Maximum function. Select the maximum value as the output from multiple input data.
Grammar: The textual language syntax format is as follows:

OUT := MAX(IN0, …,INn)
IN0, INn, and OUT can be any data type, and their parameter descriptions are detailed in the following table:

Take the maximum value MAX
Name Definition Data type Explanation
IN0 Input variables Any type Input data 0
INn Input variables Any type Input data 1

Return value Output variables Any type Output data

Create a POU, the input value of iOutVar being the larger one of iVar1 and iVar2. The specific implementation
program is as follows:

VAR
iVar1:INT:=30;
iVar2:INT:=60;
iOutVar: INT;
END_VAR

iOutVar:=MAX(iVar1,iVar2);

After running the program, the output result is 60.

1-4-1-3. Take the minimum value MIN

Function: Minimum value function. Select the minimum value as the output from multiple input data.
Grammar: The textual language syntax format is as follows:

OUT := MIN(IN0, …,INn)
IN0, INn, and OUT can be any data type, and their parameter descriptions are detailed in the following table:

Take the minimum value MIN
Name Definition Data type Explanation
IN0 Input variables Any type Input data 0
INn Input variables Any type Input data 1

Return value Output variables Any type Output data

Example: To create a POU, the input value of iOutVar is the smaller one of iVar1 and iVar2. The specific
implementation program is as follows:

13

VAR
iVar1:INT:=30;
iVar2:INT:=60;
iOutVar: INT;
END_VAR

iOutVar:=MIN(iVar1,iVar2);

After running the program, the output result is 30.

1-4-1-4. Limit value LIMIT

Function: Limit value output. Determine whether the input data is between the minimum and maximum values.
If the input data is between the two, directly output the input data as output data. If the input data is greater than
the maximum value, the maximum value is taken as the output value. If the input data is less than the minimum
value, the minimum value is used as the output value.
Grammar: Its textual language syntax format is as follows:,

OUT := LIMIT(Min, IN, Max)
IN, Min, Max, and return values can be any data type, and their parameter descriptions are detailed in the table
below:

Limit value LIMIT
Name Definition Data type Explanation
Min Input variables BOOL Input data 0
IN Input variables Any type Input data n
Max Input variables Any type Input data n

Return value Output variables Any type Output data

Example: Create a POU, use the limit value instruction to ensure that the output value is within the range of
30-80 regardless of the input value. The specific implementation program is as follows:

VAR
iVar:INT:=90;
iOutVar: INT;
END_VAR

iOutVar:=limit(30,iVar,80);

The minimum input value is 30, the maximum input value is 80, and the actual input value is 90, which is
greater than the maximum value. Therefore, the final output is based on the maximum value of 80, so the final
result is 80.

1-4-1-5. Multiple choice MUX

Function: Multiplexer operation. Select one of multiple input data as the output through the control value.
Grammar: Its textual language syntax format is as follows:

OUT := MUX(K, IN0,...,INn)

14

IN0,…, INn and the return value can be any variable type. But K must be BYTE, WORD, DWORD, LWORD,
SINT, USINT, INT, UINT, DINT, LINT, ULINT, or UDINT. MUX selects the Kth data output from the
variable group. The parameter description is detailed in the table below:

Multiple choice MUX
Name Definition Data type Explanation
K Input variables Integer type Control value
IN0 Input variables Any type Input data 0
INn Input variables Any type Input data n

Return value Output variables Any type Output data

Example: To create a POU, use multiple choice instruction to select the final output data based on the input
control value iVar. The specific implementation program is as follows:

VAR
iVar:INT:=1;
iOutVar: INT;
END_VAR

iOutVar:=MUX(iVar,30,40,50,60,70,80);
The final output result is 40, as the data sorting starts from the 0th element and accumulates.
If the data exceeds the range, the final data will be output based on the last data. In the example, setting the
value of iVar to 10 will result in a final output of 80. If iVar is -1, the final output value is still 80.

1-4-2. Compare Instructions

Command
name

Command icon Function

EQ Equal to

NE Not equal to

GT Greater than

GE Greater than or equal to

LT Smaller than

15

Command
name

Command icon Function

LE Smaller than or equal to

1-4-3. Shift instruction

Command
name

Command icon Function

SHL Shift left

SHR Shift right

ROL Rotate left

ROR Rotate right

1-4-3-1. Shift left SHL

Function: Shift the operand to the left bit by bit, without processing the left out bit, and automatically fill in the
right empty bit with 0.
Syntax: The instruction can shift the data in input IN by n bits to the left, and assign the output result to OUT.
Shifting a binary number by one bit to the left is equivalent to multiplying the original number by 2. If n is
greater than the width of the data type, BYTE, Word, and DWORD values will be filled to zero. The syntax
format of textual language is as follows:

OUT:= SHL (IN, n)

For example, the shift left instruction is used to shift the current value of WORD1(an WORD type input
variable) to the left by 4 bits, , and the output result is assigned to Word2.

Shift left program example

As mentioned above, Word1 is 0001 in hexadecimal, and after moving it 4 bits to the left, the final output result
is 16#0010. The process is shown in the following figure. Fill in the empty space of the lower 4 bits with 0.

16

The process of shift left by 4 bits

The total number of bits in a shift operation is influenced by the data type of the input variable. If the input
variable is a constant, the data type with the smallest length will be taken. The data type of the output variable
does not affect the arithmetic operation, and the difference between the two is identified through the following
example.
Please compare the bit left shift operation of hexadecimal numbers below. Although the input variable values in
byte and word form are equal, depending on the data type of the input variable (BYTE or WORD), erg_byte and
erg_word will yield different results.

VAR
in_byte : BYTE:=16#45;
in_word : WORD:=16#45;
erg_byte : BYTE;
erg_word : WORD;
n: BYTE :=2;
END_VAR

erg_byte:=SHL(in_byte,n); (* result is 16#14 *)
erg_word:=SHL(in_word;n); (* result is 16#0114 *)

When the BYTE type variables b6 and b7 shift left by 2 bits and overflow, the final data is hexadecimal 14.
When the b6 and b7 bits of the WORD type variable are shifted to the left by two bits and enter the high byte b8
and b9 bits, this bit will continue to be retained, and the final result is a hexadecimal value of 114. The process
is shown in the following figure:

17

BYTE and WORD variables shifted left by bit

1-4-3-2. Shift right SHR

Function: Shift the operand bit by bit to the right, without processing the right out bit, and automatically fill in
the left empty bit with 0.
Syntax: The instruction can shift the data in input IN by n bits to the right, assign the output result to OUT, and
shift the binary number by one bit to the right is equivalent to dividing the original number by 2. If n is greater
than the width of the data type, BYTE, Word, and DWORD values will be filled in as zero. If a signed data type
is used, the arithmetic shift will be supplemented by the highest order. The textual language syntax format is as
follows:

OUT:= SHR (IN, n)
Example: Use the bit by bit right shift instruction to shift the current value Word1(WORD type input variable)
to the right by 5 bits, and assign the output result to Word2.

Shift right by bit example
Word1 is a hexadecimal value of 0100, and after moving 5 bits to the right, the final output result is 16#0008.
Due to the fact that WORD type variables belong to unsigned data types and have valid values ranging from 0
to 65535, after shifting 5 bits to the right, there is no sign bit, and the high 5 bits are filled with 0. The shift
process is shown in the following figure:

The process of shift right by 5 bits

18

The previous example was the right shift of unsigned bit data. If encountering signed integer data, the high bit
right shift requires filling in the signed bit. As shown in the following example:
For example, the current value of the INT type input variable iINT1 is shifted to the right by 4 bits, and the
output result is assigned to iINT2.

Signed integer data shift right example
As mentioned above, since INT is signed bit data with valid values ranging from -32768 to 32767, iINT1 is
hexadecimal signed data F100, and the highest bit b15 is the sign bit. After moving 4 bits to the right, data needs
to be supplemented. Due to the sign bit of the source data being 1, the high 4 bits are supplemented with 1 (i.e.
sign bits). Therefore, the final result of program operation is 16#FF10. The specific shift process is shown in the
following figure:

1-4-3-3. Rotate left ROL

Function: Rotate the operands to the left, and the bits moved from the left are directly added to the lowest bit on
the right.
Syntax: Allowed data types: BYTE, WORD, DWORD. This instruction can be used to rotate all the contents of
the input IN bit by bit to the left, and the vacated bits are filled with the signal state of the shifted bits. The input
parameter n provides a numerical value representing the number of bits to rotate, and OUT is the result of the
rotation operation. The textual language syntax format is as follows:

OUT:= ROL (IN, n)
Example: Create a POU and compare the differences between bitwise left shift and cyclic left shift. Move the
hexadecimal WORD type variable Word1 by the same number of digits using two different left shift methods,
and compare the results.

Bitwise left shift and rotate left shift comparison program
As shown in the following figure, after using the rotated right, the output of Word3's b0 to b3 bits does not fill
with 0, but rather fills in the 1010 of b12 to b15 in the input data Word1 to b0 to b3 bits.

19

The process of rotate left shift by 4 bits

The total number of bits in a rotate shift instruction is also affected by the data type of the input variable. If the
input variable is a constant, the data type with the smallest length will be taken. The data type of the output
variable does not affect the arithmetic operation, and the difference between the two is identified through the
following example.
Example: please compare the rotate left shift operation of hexadecimal numbers below. Although the input
variable values in byte and word form are equal, depending on the data type of the input variable (BYTE or
WORD), erg_byte and erg_word will yield different results.

VAR
in_byte: BYTE:=16#45;
in_word: WORD:=16#45;
erg_byte : BYTE;
erg_word : WORD;
n: BYTE :=2;
END_VAR

erg_byte:=ROL(in_byte,n); (* result is 16#15 *)
erg_word:=ROL(in_word,n); (* result is 16#0114 *)

BYTE and WORD variable rotate left shift comparison

As shown in the figure, when the b6 and b7 bits of the BYTE type variable are moved to the left by 2 bits and
then moved to the b0 and b1 bits in the output data, the final data is hexadecimal 15. When the b6 and b7 bits of
the WORD type variable are shifted to the left by two bits, they are moved to bits b8 and b9 in the output data.
The b14 and b15 bits of the original data are 0, and after being shifted to the left, they are moved to bits b0 and
b1 in the output data. Therefore, the final result is a hexadecimal 114.

20

1-4-3-4. Rotate right ROR

Function: Rotate the operands bit by bit to the right, and the bits moved out from the right are directly added to
the highest position on the left.
Syntax: Allowed data types: BYTE, WORD, DWORD. Using this instruction, all contents in the input IN can
be rotated bit by bit to the right, and the vacated bits are filled with the signal state of the shifted bits. The input
parameter n provides a numerical value to represent the number of digits to rotate, and OUT is the result of the
rotation operation. The textual language syntax format is as follows:

OUT: = ROR (IN, n)
For example, the current value of the WORD type input variable Word1 is rotated 5 bits to the right by using
the rotate right shift instruction, and the output result is assigned to Word2.

Rotate right program example

Rotate right by 5 bits process
The final running result of the program is 1008 in hexadecimal, and the program moves the lower 5 bits b0~b4
of Word1 to b11~b15 in Word2.

21

1-5. Operation instructions

1-5-1. Assignment instruction

Command Icon Function

MOVE Assignment

1-5-1-1. Assignment instruction MOVE

Function: Assign the value of a constant or variable to another variable.
Example: Create a POU and assign the data from the WORD variable WORD1 to WORD2. The specific
implementation program is as follows:

MOVE instruction example

1-5-2. Arithmetic operation instructions

Command Icon Function

ADD Addition

SUB Subtraction

MUL Multiplication

DIV Division

MOD Remainder

22

1-5-2-1. Addition operation ADD

Function: Addition operation instruction, adding two (or more) variables or constants. Two time variables can
also be added, resulting in another time variable.
Syntax: The instruction can add the value of the input variable IN0 to the value of INn, and assign the result to
OUT. The addition operation instruction supports the following variable types: BYTE, WORD, DWORD, SINT,
USINT, INT, UINT, DINT, UDINT, (L) REAL, TIME, and constants. The textual language syntax format is as
follows:

OUT := IN0 +…+INn

Example 1: Create a POU, declare two integer variables iVar1 and iVar2, assign iVar1 to 2014, and then make
the value of iVar2 the sum of iVar1 and iVar1. The specific code is as follows:

VAR
iVar1:INT：=2014;
iVar2:INT;
END_VAR

iVar2:=iVar1+iVar1;

The running result of the program is iVar2 equal to 4028.

Example 2: In practical engineering, it is often necessary to record the number of operations, using the ST
programming language. When the number accumulates to 10, the cumulative variable is cleared to zero.
The following is a program implementation using ST language. Accumulate the addend iCounter by triggering
the function block along the rising edge.

VAR
bCalStart: BOOL;
FB_StartTrigR_TRIG:R_TRIG;
iCounter:word;
END_VAR

FB_StartTrigR_TRIG(CLK:=bCalStart);
IF FB_StartTrigR_TRIG.Q THEN
iCounter:=iCounter+1;
END_IF
IF iCounter=10 THEN
iCounter:=0;
END_IF

Note: TIME variables can also use the addition function, where two TIME variables are added to obtain a new
time.

Example: t#45s + t#50s = t#1m35 s.
The selected output data type should be able to store the output results, otherwise it may cause data errors.

23

1-5-2-2. Subtraction operation SUB

Function: Subtraction operation instruction, subtracting two variables or constants.
Syntax: The instruction can subtract the value of IN0 by the input variable IN1 and assign the result to OUT.
The subtraction operation instruction supports the following variable types: BYTE, WORD, DWORD, SINT,
USINT, INT, UINT, DINT, UDINT, REAL, (L) REAL, TIME, and constants. The textual language syntax
format is as follows:

OUT := IN0 –IN1

For example: create a POU, declare two Floating-point arithmetic variables rVar1 and rVar2, assign values of
3.14 and 10 respectively, and declare an rResult variable, whose value is the value obtained by subtracting rVar1
from rVar2. The specific code is as follows:

VAR
rVar1:REAL:=3.14;
rVar2:REAL:=10;
rResult:REAL;
END_VAR

rResult:=rVar2-rVar1;

The running result of the program is rResult equal to 6.86.
Note:
① TIME type variables can also use the subtraction function, where two TIME variables are subtracted to
obtain a new time.
Example: t#1m35s - t#50s = t#45s, but the time result cannot have a negative value.
② TOD type variables can also use the subtraction function, where two TOD types are subtracted to obtain a
new TIME type data.
Example: TOD#45:40:30- TOD#22:30:20=T#1390m10s0ms, but the time result cannot have a negative value.

1-5-2-3. Multiplication operation MUL

Function: Multiplication operation instruction, multiplying two (or more) variables or constants.
Syntax: The instruction can perform a multiplication operation on the value of the input variable IN0 until the
value of INn, and assign its product to OUT. The multiplication instruction supports the following variable
types: BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT, (L) REAL, TIME, TOD, and
constants. The textual language syntax format is as follows:

OUT := IN0 *…*INn

Example: Create a POU, declare two integer variables iVar1 and iVar2, assign values of 10 and 2 respectively,
and then declare an integer variable iResult, so that the result is the product of iVar1 and iVar2. The specific
implementation code is as follows:

VAR
iVar1:INT:=10;
iVar2:INT:=2;
iResult:INT;
END_VAR

24

iResult:=iVar1*iVar2;

The running result of the program is iResult equal to 20.

1-5-2-4. Division operation DIV

Function: Division operation instruction, dividing two variables or constants.
Syntax: The instruction can divide the input variable IN0 by the value of IN1, and assign its quotient value to
OUT. The division operation instruction supports the following variable types: BYTE, WORD, DWORD, SINT,
USINT, INT, UINT, DINT, UDINT, REAL, LREAL, and constant. The textual language syntax format is as
follows:

OUT := IN0 / IN1

Example: Create a POU, declare two integer variables iVar1 and iVar2, assign values of 10 and 2 respectively,
and then declare an integer variable iResult, which is the value obtained by dividing iVar1 by iVar2. The
specific implementation code is as follows:

VAR
iVar1:INT:=10;
iVar2:INT:=2;
iResult:INT;
END_VAR

iResult:=iVar1/iVar2;

The running result of the program is iResult equal to 5.
Note: When using the DIV instruction, instructions such as CheckDivByte, CheckDivWord, CheckDivDWord,
and CheckDivReal can be used to check whether the divisor is zero, avoiding the phenomenon of divisor being
zero.

1-5-2-5. Remainder operation MOD

Function: Divide variables or constants to obtain remainder, and the result is the remainder after dividing two
numbers, which is an integer data.
Syntax: The MOD instruction can assign the remainder of the input variables IN0 and IN1 to OUT, and
typically uses this instruction to create equations with a remainder within a specific range. The remainder
operation instruction supports the following variable types: BYTE, WORD, DWORD, SINT, USINT, INT,
UINT, DINT, UDINT, REAL, LREAL, and constants. The textual language syntax format is as follows:

OUT := IN0 MOD IN1;

Example: Create a POU, declare two integer variables iVar1 and iVar2, assign values of 44 and 9 respectively,
and then declare an integer variable iResult to make its value to be the one after the remainder operation of
iVar1 and iVar2. The specific implementation code is as follows:

VAR
iVar1:INT:=44;
iVar2:INT:=9;
iResult:INT;

25

END_VAR

iResult:=iVar1 MOD iVar2;

The running result of the program is iResult equal to 8.

1-5-3. Mathematical operation instructions

Command Icon Function

ABS Absolute value

SQRT Square root

EXP Exponent

LN Natural logarithm

LOG Common logarithm

SIN Sine

COS Cosine

ACOS Arccosine

ASIN Arcsine

TAN Tangent

ATAN Arctangent

1-5-3-1. Absolute value ABS

Function: This function instruction is used to calculate the absolute value of a number. It has nothing to do with
the sign of positive and negative numbers.
Syntax: The absolute value operation instruction supports the following variable types: BYTE, WORD,
DWORD, SINT, USINT, INT, UINT, DINT, UDINT, REAL, LREAL, and constants. The textual language
syntax format is as follows:

OUT := ABS (IN);
Example: ABS function example.

VAR
iVar1:INT:=-44;
iResult:INT;
END_VAR

iResult:=abs(iVar1);

26

The running result of the program is iResult equal to 44.

1-5-3-2. Square root SQRT

Function: The square root of non negative real numbers.
Syntax: The input variable IN can be BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT,
REAL, LREAL, and constant, but the output must be of type REAL or LREAL. The textual language syntax
format is as follows:

OUT := SQRT(IN);
Example: SQRT function example.

VAR
rVar1:REAL:=16;
rResult:REAL;
END_VAR

rResult:=SQRT(rVar1);
The running result of the program is rResult equal to 4.

1-5-3-3. Exponent EXP

Function: return the power of e (the base of Natural logarithm). e is a constant of 2.71828.
Syntax: The input variable IN can be BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT,
REAL, LREAL, and constant, but the output must be type REAL or LREAL. The textual language syntax
format is as follows:

OUT := EXP(IN);
Example: EXP function example.

VAR
rVar1:REAL:=2;
rResult:REAL;
END_VAR

rResult:=EXP(rVar1);

The running result of the program is rResult equal to 7.389056.

1-5-3-4. Natural logarithm LN

Function: returns the Natural logarithm of a number. The base of Natural logarithm is the constant term e
(2.71828182845904).
Syntax: The input variable IN can be BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT,
REAL, LREAL, and constant, but the output must be type REAL or LREAL. The textual language syntax
format is as follows:

OUT := LN (IN);
Example: LN function example.

VAR

27

rVar1:REAL:=45;
rResult:REAL;
END_VAR

rResult:=LN(rVar1);

The running result of the program is rResult equal to 3.80666.

1-5-3-5. Logarithm with a base of 10 LOG

Function: Returns the logarithm of a base of 10.
Syntax: The input variable IN can be BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT,
REAL, LREAL, and constant, but the output must be type REAL or LREAL. The textual language syntax
format is as follows:

OUT := LOG(IN);
Example: LOG function example.

VAR
rVar1:REAL:=314.5;
rResult:REAL;
END_VAR

rResult:=LOG(rVar1);

The running result of the program is rResult equal to 2.49762.

1-5-3-6. Sine function SIN

Function: Sine function.
Syntax: The input variable IN can be BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT,
REAL, LREAL, and constant, but the output must be type REAL or LREAL. The textual language syntax
format is as follows:

OUT := SIN(IN);
Example: SIN function example.

VAR
rVar1:REAL:=0.5;
rResult:REAL;
END_VAR

rResult:=SIN(rVar1);

The running result of the program is rResult equal to 0.479426.

28

1-5-3-7. Cosine function COS

Function: Cosine function.
Syntax: The input variable IN can be BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT,
REAL, LREAL, and constant, but the output must be type REAL or LREAL. The textual language syntax
format is as follows:

OUT := COS(IN);
Example: COS function example.

VAR
rVar1:REAL:=0.5;
rResult:REAL;
END_VAR

rResult:=COS(rVar1);

The running result of the program is rResult equal to 0.877583.

1-5-3-8. Arccosine functionACOS

Syntax: The input variable IN can be BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT,
REAL, LREAL, and constant, but the output must be type REAL or LREAL. The textual language syntax
format is as follows:

OUT := ACOS(IN);
Example: ACOS function example.

VAR
rVar1:REAL:=0.5;
rResult:REAL;
END_VAR

rResult:=ACOS(rVar1);

The running result of the program is rResult equal to 1.0472.

1-5-3-9. Arcsin function ASIN

Function: Sine radian (Arcsine function).
Syntax: The input variable IN can be BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT,
REAL, LREAL, and constant, but the output must be type REAL or LREAL. The textual language syntax
format is as follows:

OUT := ASIN(IN);
Example: ASIN function example.

VAR
rVar1:REAL:=0.5;
rResult:REAL;
END_VAR

29

rResult:=ASIN(rVar1);
The running result of the program is rResult equal to 0.523599.

1-5-3-10. Tangent function TAN

Function: Tangent function.
Syntax: The input variable IN can be BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT,
REAL, LREAL, and constant, but the output must be type REAL or LREAL. The textual language syntax
format is as follows:
OUT:=TAN (IN);
Example: TAN function example.

VAR
rVar1:REAL:=0.5;
rResult:REAL;
END_VAR

rResult:= TAN (rVar1);
The running result of the program is rResult equal to 0.546302.

1-5-3-11. Arctangent function ATAN

Function: Tangent radian (Arctangent function).
Syntax: The input variable IN can be BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT,
REAL, LREAL, and constant, but the output must be type REAL or LREAL. The textual language syntax
format is as follows:

OUT := ATAN(IN);
Example: ATAN function example.

VAR
rVar1:REAL:=0.5;
rResult:REAL;
END_VAR

rResult:= ATAN (rVar1);
The running result of the program is rResult equal to 0.463648.

30

1-5-4. Address operation instruction

Command Icon Function

SIZEOF Data type size

ADR Address operator

BITADR Bit address operator

1-5-4-1. Data type size SIZEOF

Function: Execute this function to determine the number of bytes required for the given data type. Simply put,
its function is to return the number of memory bytes occupied by an object or type.
Syntax: The return value of SIZEOF is an unsigned value, and the return value of type will be used to find the
size of variable IN0. The output value of OUT is in bytes, and IN0 can be any data type. The textual language
syntax format is shown below. The type of return value is an implicit data type, which will be determined
according to the actual data value. See the following table for details:

OUT := SIZEOF(IN0);
Return data type of SIZEOF

SIZEOF return value Implicit data type
0 <= size of x < 256 USINT

256 <= size of x < 65536 UINT
65536 <= size of x < 4294967296 UDINT

4294967296 <= size of x ULINT

Example: Using the SIZEOF instruction to retrieve the memory size occupied by an array, the program is as
follows:
Example of ST language:

VAR
arr1:ARRAY[0..4] OF INT;
var1:INT;
END_VAR

var1 := SIZEOF(arr1);
The program assigns the result to var1, and ultimately var1 is equal to 10. Because the arr1 array consists of 5
INT integer elements and the result unit of SIZEOF is BYTE, the program runs with a total of 10 BYTEs,
indicating that arr1 occupies 10 bytes of memory.

1-5-4-2. Address operator ADR

Function: Obtain the memory address of the input variable and output it. This address can be used as a pointer
within the program or passed as a pointer to a function.
Syntax: The ADR operator returns an address variable with a DWORD value, and IN0 can be of any data type.
The textual language syntax format is as follows:

OUT :=ADR(IN0);

31

The return value of ADR is only the memory address of the variable. The memory address can store data with a
length of 1 BYTE. The content operator "^" can be used to extract the content in the corresponding address,
such as obtaining the memory address of var_int1 is assigned to a pointer variable, and the specific content in its
corresponding address is extracted by using the "^" operator and assigned to var_int2. The implementation
program is as follows:

pt := ADR(var_int1);
var_int2:= pt^;

Example 1: Using the ADR instruction to retrieve an array, the program is as follows:
Example of ST language:

VAR
arr1:ARRAY[0..4] OF INT;
dwVar:DWORD;
END_VAR

dwVar:=ADR(arr1);

Example 2: Using the ADR instruction to retrieve an array, the program is as follows:
Example of ST language:

VAR
arr1:ARRAY[0..4] OF INT;
dwVar:DWORD;
END_VAR

dwVar:=ADR(arr1);

Example 3: An example of using the ADR instruction to retrieve an array is as follows:
Example of ST language:

VAR
pt:POINTER TO INT;
var_int1:INT;
var_int2:INT;
END_VAR

pt := ADR(var_int1);
var_int2:=pt^;

1-5-4-3. Bit address operator BITADR

Function: Returns the bit address information offset of the allocation variable.
Syntax: The BITADR operator returns an address variable with a DWORD value, and IN0 can be of any data
type. The textual language syntax format is as follows:

OUT :=BITADR(IN0);
The implementation program is as follows, where BITADR returns a bit offset numerical address in the
DWORD variable type. Note that the offset value depends on whether the option type address can be obtained
from the target system. The maximum DWORD defines the memory area as follows:

32

BITADR offset addresses for each address area
Address area Start address Explanation
Memory 16x40000000 %M
Input 16x80000000 %I
Output 16xC0000000 %Q

An example of using the BITADR instruction to retrieve bit address information is shown in the following
program. Example of ST language:

VAR
var1 AT %IX2.3:BOOL;
bitoffset: DWORD;
END_VAR

bitoffset:=BITADR(var1);

The running result is 80000013 in hexadecimal, where "2" in %IX2.3 represents 2 Bytes and ". 3" represents the
4th Bit, so its address is equal to 2*8+4=20. Convert the decimal 20 to the hexadecimal 14. Because the first
address corresponding to Zone I is stored starting from 80000000, it is not difficult to understand that the actual
address corresponding to hexadecimal 14 is 16#80000013. The schematic diagram is shown in the table below:

BITADR example explanation
offset value data content
16#80000000
16#80000001
16#80000002

...

...
16#80000011
16#80000012
16#80000013 bitoffset

33

1-5-5. Data conversion instructions

Before using this instruction, you need to add the util.library.
Syntax:<TYPE1>_TO_< TYPE2>
It is strictly prohibited to implicitly convert "larger" data types to "smaller" data types for use, because
information may be lost when converting from larger data types to smaller data types.
If the converted value exceeds the storage range of the target data type, the high bytes of this number will be
ignored. Example: Convert INT Type to BYTE type, or DINT Type to WORD type.
For <TYPE>_TO_STRING conversion, the string is generated from the left. If the length of the defined string
is less than the length of<TYPE>, the right part will be truncated.

BCD code and integer conversion instruction
Command name Command icon Function

BCD_TO_BYTE BCD convert to BYTE

BCD_TO_DWORD BCD convert to DWORD

BCD_TO_INT BCD convert to INT

BCD_TO_WORD BCD convert to WORD

BYTE_TO_BCD BYTE convert to BCD

DWORD_TO_BCD DWORD convert to BCD

INT_TO_BCD INT convert to BCD

WORD_TO_BCD WORD convert to BCD

1-5-5-1. BCD code and integer data conversion

BCD (Binary Coded Decimal... BCD) refers to the use of 4-bit binary numbers to represent the values of each
digit in a decimal number in parallel. For example, in BIN data, BCD data 0000 0001 0101 0111 (343) is used
to represent the decimal number "157" in the following way.

BCD example

34

When BCD data is stored in 16 bits memory, it can handle values ranging from 0 to 9999 (the maximum value
of 4 bits). The weights of each bit are shown in the following figure:

Weights of each value represented by BCD in decimal system

Example: Using the ST programming language, convert BCD code 73 to integer data.
i:=BCD_TO_INT(73);

Application of convert BCD to INT

As shown in the figure, use BCD_TO_ INT instruction performs conversion, as the result of converting 73 to
binary is 01001001, the result of converting it to BCD is 49.

Example: Using ST programming language to convert integer data 73 into BCD code.
i:=INT_TO_BCD(73);

Application of convert INT to BCD

As shown in the above figure, using INT_TO_BCD instruction for conversion. The program converts 73 in
decimal system to BCD code, and the result is 01110011, so the final BCD code Decimal representation result
is 115.

1-5-5-2. BOOL_TO_<TYPE> boolean type conversion data

Function: convert Boolean data type to other data types.
Support data types: BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT, REAL, TIME, DATE,
TOD, DT, and STRING.

 When the output is digital type: if the input is TRUE, the output is 1. If the input is FALSE, the output
is 0.

 When outputting as a string type: If the input is TRUE, the string 'TRUE' is output. If the input is
FALSE, the output is the string 'FALSE'.

35

BOOL_TO_<TYPE> conversion example
Command
name

Command example Function

BOOL_TO

BOOL convert to INT

BOOL convert to STRING

BOOL convert to TIME

BOOL convert to TOD

1-5-5-3. BYTE_TO_<TYPE> byte type conversion data

Function: convert byte type to other data types. Support data types: BOOL, WORD, DWORD, SINT, USINT,
INT, UINT, DINT, UDINT, REAL, TIME, DATE, TOD, DT, and STRING.

 When the output is BOOL: When the input is not equal to 0, the output is TRUE. When the input is
equal to 0, the output is FALSE.

 When the output is TIME or TOD: the input will be converted in milliseconds.
 When the output is DATE or DT: the input will be converted in seconds.

BYTE_TO_<TYPE> conversion example
Comand
name

Command example Function

BYTE_TO

BYTE convert to INT

BYTE convert to STRING

BYTE convert to TIME

BYTE convert to BOOL

36

1-5-5-4. < Integer data > _TO_<TYPE> integer type conversion instruction

Function: Convert integer type data to other data types.
Support data types: BOOL, BYTE, SINT, WORD, DWORD, USINT, INT, UINT, DINT, UDINT, REAL, TIME,
DATE, TOD, DT, and STRING.

 When the output is BOOL: When the input is not equal to 0, the output is TRUE. When the input is
equal to 0, the output is FALSE.

 When the output is TIME or TOD, the input will be converted in milliseconds.
 When the output is DATE or DT, the input will be converted in seconds.

< Integer data > _TO_<TYPE> Example of integer type conversion
Command
name

Command example Function

WORD_TO

Word convert to
USINT

Word convert to
Time

Word convert to
DT

1-5-5-5. REAL_TO_<TYPE> Real type conversion instruction

Function: convert Floating-point arithmetic numbers to other types of data. When converting a Floating-point
arithmetic number to other types of data, first round the value to an integer value, and then convert it to a new
quantity type.
Support data types: BOOL, BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT, REAL, TIME,
DATE, TOD, DT, and STRING.

 When the output is BOOL: When the input is not equal to 0, the output is TRUE. When the input is
equal to 0, the output is FALSE.

 When the output is TIME or TOD: the input will be converted in milliseconds.
 When the output is DATE or DT: the input will be converted in seconds.

REAL_TO_<TYPE> Example of real type conversion
Command name Command example Function

REAL_TO REAL convert to INT

37

1-5-5-6. TIME_TO_<TYPE> time type conversion instruction

Function: Convert time-based data to other types of data, and store the time in milliseconds internally as a
DWORD type (starting from 00:00 am for the TIME_OF_DAY variable).
Support data types: BOOL, BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT, REAL, TIME,
DATE, TOD, DT, and STRING.

 When the output is BOOL: When the input is not equal to 0, the output is TRUE. When the input is
equal to 0, the output is FALSE.

TIME_TO_<TYPE> Example of time type conversion
Command
name

Command example Function

TIME_TO

TIME convert to STRING

TIME convert to DWORD

1-5-5-7. DATE_TO_<TYPE> Date type conversion instruction

Function: Convert date type into other types, store dates in seconds internally, starting from January 1, 1970.
Support data types: BOOL, BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT, REAL, TIME,
DATE, TOD, DT, and STRING.

 When the output is BOOL: When the input is not equal to 0, the output is TRUE. When the input is
equal to 0, the output is FALSE.

DATE_TO_<TYPE> Example of date type conversion instruction
Command
name

Command example Function

DATE_TO

DATE convert to INT

DATE convert to
STRING

1-5-5-8. DT_TO_<TYPE> Date time type conversion instruction

Function: Convert date time data into other types of data, with dates stored internally in seconds, starting from
January 1, 1970.
Support data types: BOL, BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT, REAL, TIME,
DATE, TOD, DT, and STRING.

 When the output is BOOL: When the input is not equal to 0, the output is TRUE. When the input is
equal to 0, the output is FALSE.

38

DT_TO_<TYPE> Date time type conversion example
Command
name

Command example Function

DT_TO

DT
convert to
BYTE

DT
convert to
STRING

1-5-5-9. TOD_TO_<TYPE> Time type conversion instruction

Function: Convert time-based data into other types of data, and convert dates internally in milliseconds.
Support data types: BOOL, BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT, REAL, TIME,
DATE, TOD, DT, and STRING.

 When the output is BOOL: When the input is not equal to 0, the output is TRUE. When the input is
equal to 0, the output is FALSE.

TOD_TO_<TYPE> Example of time type conversion
Command
name

Command example Function

TOD_TO

TOD convert to
REAL

TOD convert to
TIME

TOD convert to
USINT

39

1-5-5-10. STRING_TO_<TYPE> Character type conversion instruction

Function: Convert strings to other types of data. String variables must contain a valid target variable value,
otherwise the conversion result is 0.
Support data types: BOOL, BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT, REAL,
TIME, DATE, TOD, DT, and STRING.

STRING_TO_<TYPE> Example of character type conversion
Command
name

Command example Function

STRING_TO

STRING
convert to
WORD

STRING
convert to
TIME

1-5-5-11. Rounding TRUNC

Function: Truncate the decimal part of the data and only retain the integer part.
Support data types: input is REAL type, output is INT, WORD, DWORD type.

TRUNC example
Command
name

Command example Function

TRUNC

Round
positive
numbers

Rounding
negative
numbers

Notes:
① When changing from a larger data type to a smaller data type, information may be lost.
② This instruction only truncates the integer part. If you want to round it up, you can use REAL_TO_INT
instruction.

40

2. Special instructions
2-1. XSA series high speed count instructions

2-1-1. Function overview

The XSA series PLC has a high-speed counting function, which enables the measurement of high-speed input
signals such as measurement sensors and rotary encoders by selecting different counters. Its maximum
measurement frequency can reach 1MHz. At present, the instruction library and high-speed IO interface are
only supported by XSA330.
The XSDH and XSLH series will be supported in the future. For firmware versions below V1.1.0, please refer
to Chapter 2-2 for the XSDH and XSLH series instruction libraries.

2-1-2. Function block

2-1-2-1. Command format

Command Name Graph ST language

XJ_Counter_Enable Enable the high
speed counter

XJ_Counter_Compare Compare
consistent output

XJ_Counter_PresetValue Preset value
write in

41

Command Name Graph ST language

XJ_TouchProbe Probe

XJ_MeasurePulseWidth

Read the pulse
width

measurement
value of the
counter

XJ_Counter_Sample Counter sample

XJ_Counter_CompareArr
ay

Multiple
segments
compare

XJ_Counter_SetRing Set ring counter

42

Command Name Graph ST language

XJ_ResetCmpOutput

Reset the
compare

consistent output
port

XJ_Counter_Reset Clear the error

Note: The reason why the graphical representation and ST representation of some instructions are marked with
red wavy lines is that VAR_IN_OUT'Counter' must be assigned a value, then the program can be compiled and
downloaded.

2-1-2-2. Enable the high speed counter【XJ_Counter_Enable】

(1) Input variables
Input
variable

Name Data type Effective
range

Initial value Description

Counter High
speed
counting
input port

XJ_COUNTER_REF - - After configuring the high-speed
counter input in the high-speed IO
interface, it will be automatically
instantiated. Select the corresponding
instantiation name of the high-speed
counter

xEnable Enable BOOL TRUE,
FALSE

FALSE Normally ON the enable to count

eMode Counting
mode

HSC_EDGE_MODE PosEdge,
NegEdge,
BothEdge

PosEdge PosEdge: rising edge counting
NegEdge: falling edge counting
BothEdge: double edge counting

xDirection Direction BOOL TRUE,
FALSE

FALSE FALSE: up counting
TRUE: down counting

(2) Output variables
Output
variables

Name Data type Effective range Initial
value

Description

diValue High speed
counting value

DINT Data range 0 High speed counting value

udiFrequency Pulse frequency
measurement

value

UDINT 0 Unit: Hz, if it is a low
frequency, it can be used in
conjunction with the
measurement period
through the interface

43

udiRPM Rotation speed
per minute

UDINT 0 Unit: r/min, used in
conjunction with the
number of pulses per turn in
the interface configuration

xBUSY Busy BOOL TRUE,FALSE FALSE
xError Error flag BOOL TRUE,FALSE FALSE
eErrorID Error type HSIO_ERROR - 0

To use high-speed counting, it is necessary to check and configure the corresponding high-speed counter in the
hardware parameters, set the counting method and pulse frequency/rotation speed measurement related
parameters for the counter parameters.

Note:
(1) Please assigning a value to VAR_IN_OUT'Counter' when calling XJ_Counter_Enable, then can the

program be compiled and downloaded.
(2) Notes when setting xDirection:

 When single-phase or AB phase counting, counting up/down based on the xDirection terminal
status.

 When in P+D mode, the direction terminal FALSE and the xDirection terminal FALSE are
counting up. Direction terminal FALSE, xDirection terminal TRUE, represents the subtraction
count. The direction terminal is TRUE, while the xDirection terminal is FALSE, indicating a
subtractive count. The direction terminal is true, and the xDirection terminal is true, indicating
the addition count.

(3) The meaning of measurement cycle is to collect the number of pulses during this period for calculation:
 The measurement cycle is 1000ms, and the minimum measurable frequency is 1Hz. The

44

measurement cycle is 1ms, and the minimum measurable frequency is 1kHz.
 The measurement cycle is 10ms, and the minimum measurable frequency is 100Hz. The

measurement cycle is 100ms, and the minimum measurable frequency is 10Hz. The maximum
measurement frequency is the frequency that can be received by high-speed counting.

(4) The unit of rotation speed per minute is r/min, and the measured values may fluctuate back and forth
due to hardware influence.

(5) The difference between linear counting and circular counting:
 Linear counting: (DownLimitValue, UpLimitValue)
 Circular counting: [iRingDownValue, iRingUpValue]
 Counter 0-3: The linear counting range is (-2147483648, 2147483647), not include -2147483648

and 2147483647.
 Ring counting range is [-2147483648, 2147483647], include -2147483648 and 2147483647.

(6) When Counter0/Counter1 selects AB phase counting, only A-phase frequency is displayed. Set in
single phase, AB phase interface.

(7) If the count value reaches near the boundary value, the counter overflow may not report an error due to
the influence of the scanning cycle.

(8) When downloading the program, the counter value is not cleared to zero.
(9) Please enable the XJ_Counter_Enable before using XJ_Counter_Sample function block.

2-1-2-3. Compare consistent output【XJ_Counter_Compare】

Set a compare consistent output. If high-speed counting interrupt function is required, it needs to call
XJ_EnableInterrupt to open the interrupt.
Note: Multi segment comparison and single segment comparison are executed in the triggering order, and those
triggered later will not interrupt those triggered earlier. The later triggered execution will take effect after the
first triggered execution is completed.

(1) Input variable
Input

variables
Name Data type Effective range Initial

value
Description

Counter High speed
counter input
port

XJ_COUNTER_REF - - High speed counter, it is
necessary to define the
high-speed counting input
terminal (see functional
description)

xExecute Trigger BOOL TRUE,FALSE FALSE Trigger
diCompar
eValue

appoint the
compare
value

DINT 0

uiImRefre
shCycle

Hardware
direct output

time

UINT 0 Unit: 100us, maximum output
time is 3000ms.

(2) Output variables
Output
variables

Name Data type Effective range Initial
value

Description

xDone Completed
flag

BOOL TRUE,FALSE FALSE After the instruction execution is
completed, the flag is TRUE

xBusy Running BOOL TRUE,FALSE FALSE
xError Error flag BOOL TRUE,FALSE FALSE

eErr1orID Error type HSIO_ERROR - 0

45

Note:
(1) The control of Y0-Y7 can be configured in the background, and each counter can freely select Y0-Y7,

with a certain delay in output. The output time is 100us-3000ms. If ImRefreshCycle is 0, call XJ_Reset
CmpOutput to lower the output.

(2) ImRefresh=1: Hardware immediately outputs, Y0-Y7 cannot be freely selected, there is no delay, and
the output time is set through ImRefreshCycle. The output time is 0-3000ms.

(3) XJ_EnableInterrupt needs to be called in advance to open compare consistent interrupt.
(4) After hot reset and cold reset, maintain the previous comparison value.

Set compare consistent output and call XJ_EnableInterrupt to open the interrupt.
If hardware output is not set, it is necessary to turn on compare consistent interrupt. If hardware output is set,
compare consistent interrupt may not be turned on.
For example, if the output time is set to 1 second, the hardware output of Y will be 1 second after comparing the
values, and the software status of Y will remain unchanged, it will not display any output. Execute interrupt
program after external trigger input.

46

2-1-2-4. Preset value write in【XJ_Counter_PresetValue】

(1) Input variables
Input

variables
Name Data type Effective range Initial

value
Description

Counter High speed
counter input

port

XJ_COUNTER_REF - - High speed counter, it is
necessary to define the
high-speed counting input
terminal (see functional
description)

xExecute Trigger BOOL TRUE,FALSE FALSE Trigger
byTrigger
Type

Trigger type HSC_PSV_TIGGLE 0 0: Rising edge triggered
write;
1: External input triggering;
2: When comparing
consistent outputs, it is preset
and triggered at the rising
edge.

diPresetVa
lue

Preset value DINT Data range 0 Write high-speed count preset
value

(2) Output variables
Output
variables

Name Data type Effective range Initial
value

Description

xDone Completed
flag

BOOL TRUE,FALSE FALSE After completing the write, the
flag is TRUE

xError Error flag BOOL TRUE,FALSE FALSE
eErrorID Error type HSIO_ERROR - 0

Note: If the value displayed for ErrorID is 2, it is because the CounterID range is not between 0 and 3.
0: Rising edge triggered writing. After the instruction is triggered, the preset value can be written into the
high-speed count.
1: External input triggering. After the command is triggered, wait for the set external input terminal signal, and
if there is a signal, the preset value can be written in.

47

2: When comparing consistent outputs, it is preset and triggered at the rising edge.

48

2-1-2-5. Probe【XJ_TouchProbe】

(1) Input variables
Input

variables
Name Data type Effective range Initial

value
Description

Counter High speed
counter input port

XJ_COUNTE
R_REF

- - High speed counter, it is
necessary to define the
high-speed counting input
terminal (see functional
description)

xExcute Trigger BOOL TRUE,FALSE FALSE Trigger

(2) Output variables
Output
variables

Name Data type Effective range Initial
value

Description

xDone Completed
flag

BOOL TRUE,FALSE FALSE After completing the write, the
flag is TRUE

xBusy Running BOOL TRUE,FALSE FALSE
diTouchVaule Latch value DINT 0

xError Error flag BOOL TRUE,FALSE FALSE
eErrorID Error type HSIO_ERROR - 0

Set the terminal for the probe function. After triggering this terminal, the current high-speed count value can be
locked, as shown in the following figure. The positive logic, takes effect after the rising edge is triggered.

49

2-1-2-6. Read the pulse width measurement value of the counter【XJ_MeasurePulseWidth】

(1) Input variables
Input

variables
Name Data type Effective range Initial

value
Description

Counter High speed
counter input
port

XJ_COUNTER_
REF

- - High speed counter, it is
necessary to define the
high-speed counting input
terminal (see functional
description)

xExecute Trigger BOOL TRUE,FALSE FALSE Trigger
eMode Measure

high/low level
pulse width

HSC_PULSEWI
DTH_TYPE

0,1 0 0: External signal high level
(measuring high level pulse
width)
1: External signal low-level
(measuring low-level pulse
width)

(2) Output variables
Output
variables

Name Data type Effective range Initial
value

Description

udiValue Measuring
value

UDINT 0

xDone Completed
flag

BOOL TRUE,FALSE FALSE After completing the write, the
flag is TRUE

xBusy Running BOOL TRUE,FALSE FALSE
xError Error flag BOOL TRUE,FALSE FALSE
eErrorID Error type HSIO_ERROR - 0
Note: Measure the duration of high and low levels in us microseconds.

Example: If the frequency is 1kHz, it is equivalent to sending a pulse every 1ms, and if there is a high or low
level every 0.5ms, the measured high or low level is about 500us.

50

2-1-2-7. Counter sample【XJ_Counter_Sample】

(1) Input variables
Input variables Name Data type Effective range Initial value Description

Counter High speed
counter
input port

XJ_COUNTER_R
EF

- - High speed counter, it is necessary
to define the high-speed counting
input terminal (see functional
description)

eExecute Trigger BOOL TRUE,FALSE FALSE Trigger
uiSampleTime Sampl time UINT 0 Sample time (10ms~65535ms)

(2) Output variables
Output
variables

Name Data type Effective range Initial value Description

udiValue Sample value UDINT 0
xDone Completed flag BOOL TRUE,FALSE FALSE After completing the write, the flag

is TRUE
xBusy Running BOOL TRUE,FALSE FALSE
xError Error flag BOOL TRUE,FALSE FALSE
eErrorID Error type HSIO_ERROR - 0

Note:
(1) XJ_Counter_Sample can run after XJ_Counter_Enable is enabled.
(2) After the command is triggered, the sampled signal count value will not change in real time, but will be

displayed after the command is completed, displaying the high-speed count value collected within the
set time.

51

2-1-2-8. Multiple segments compare【XJ_Counter_CompareArray】

Compare consistent output: Up to 100 comparison values can be set, and the Done signal is the output.
Note: Multi-segment comparison and single segment comparison are executed in the triggering order, and those
triggered later will not interrupt those triggered earlier. The later triggered execution will take effect after the
first triggered execution is completed.

(1) Input variables
Input variables Name Data type Effective

range
Initial
value

Description

Counter High speed
counter input

port

XJ_COUNTER_REF - - High speed counter, it is necessary
to define the high-speed counting
input terminal (see functional
description)

xEnable Enable BOOL TRUE,FALSE FALSE Enable
diCompareValues Comparison

value
one-dimensi
onal array

ARRAY 0 A one-dimensional array of
comparison values for the set
counters, supporting a maximum
of 100

usiNumbers set actual
value

USINT 0 The actual value set, allowed to be
set to 1, with a maximum of 100

uiImRefreshcycle hardware
direct output

time

UINT 0 The unit is 100us, and the
maximum output time is 3000ms.
For example, setting 10000 means
1000ms

(2) Output variables
Output variables Name Data type Effective range Initial value Description
usiNumOfEqual Equal numbers USINT 0

xDone Completed
flag

BOOL TRUE,FALSE FALSE After completing the write, the
flag is TRUE

xBusy Running BOOL TRUE,FALSE FALSE
xError Error flag BOOL TRUE,FALSE FALSE
eErrorID Error type HSIO_ERROR - 0

 Multiple comparison values can be set, and when the comparison value is reached, it will enter the
task execution instruction of external events, with hardware output.

 Difference from single segment comparison: It is necessary to open a compare consistent interrupt,
otherwise the instruction will report an error.

 As shown in the figure below, set the corresponding parameters as needed:

52

2-1-2-9. Ring counting【XJ_Counter_SetRing】

(1) Input variables
Input

variables
Name Data type Effective

range
Initial
value

Description

Counter High speed
counter
input port

XJ_COUNTER_REF - - High speed counter, it is
necessary to define the
high-speed counting input
terminal (see functional
description)

xExcute Trigger BOOL TRUE,FALSE FALSE Trigger
diMaxValue Maximum

value
DINT 0 Maximum value

diMinValue Minimum
value

DINT 0 Minimum value

(2) Output variables
Output
variables

Name Data type Effective range Initial
value

Description

xDone Completed
flag

BOOL TRUE,FALSE FALSE After completing the write, the
flag is TRUE

xBusy Running BOOL TRUE,FALSE FALSE
xError Error flag BOOL TRUE,FALSE FALSE
eErrorID Error type HSIO_ERROR - 0

 The current count value needs to be within the set value range, otherwise the command will report an error.
After the instruction is executed, no instruction can switch back to linear counting. If switching back to
linear technology is required, the counting range needs to be changed to a linear counting range.

 The minimum value for linear counting is -2147483647, and the maximum value is 2147483646. For
example, adding one signal input after increasing the count to 2147483646 will change to -2147483647,
and then continue counting upwards. It will not reach the minimum value of double word signed numbers
-2147483648 and the maximum value of 2147483647.

 There are two configuration methods for ring counting: firstly, when not logged in, in the "High speed IO"
interface - "Counter parameter settings", you can click "Ring counting" and set the range. The second is to
use the XJ_Counter_SetRing instruction setting, which can directly switch linear counting to circular
counting during login.

53

2-1-2-10. Reset port of compare consistent output【XJ_ResetCmpOutput】

(1) Input variables
Input

variables
Name Data type Effective range Initial

value
Description

Counter High speed
counter
input port

XJ_COUNTER_REF - - High speed counter, it is
necessary to define the
high-speed counting input
terminal (see functional
description)

xExcute Trigger BOOL TRUE,FALSE FALSE Trigger

(2) Output variables
Output
variables

Name Data type Effective range Initial
value

Description

xDone Completed
flag

BOOL TRUE,FALSE FALSE After completing the setting, the
flag is TRUE

xBusy Running BOOL TRUE,FALSE FALSE
xError Error flag BOOL TRUE,FALSE FALSE
eErrorID Error type HSIO_ERROR - 0

Release all compare consistent output ports. At this time, Y, which was originally set as a compare consistent
output, can be used as a normal Y. As for whether the Y-point is used as a compare consistent output or a regular
output, it depends on which port instruction is triggered first for the compare consistent output command and
reset the compare consistent output command.

54

2-1-2-11. Clear the error【XJ_Counter_Reset】

Clear errors related to high-speed counting instructions.

(1) Input variables
Input

variables
Name Data type Effective range Initial

value
Description

Counter High speed
counter input

port

XJ_COUNTER_
REF

- - High speed counter, it is
necessary to define the
high-speed counting input
terminal (see functional
description)

xExcute Trigger BOOL TRUE,FALSE FALSE Trigger

(2) Output variables
Output
variables

Name Data type Effective range Initial
value

Description

xDone Completed
flag

BOOL TRUE,FALSE FALSE After completing the setting, the
flag is TRUE

xBusy Running BOOL TRUE,FALSE FALSE
xError Error flag BOOL TRUE,FALSE FALSE
eErrorID Error type HSIO_ERROR - 0

2-1-3. Parameter settings

Add Library File: Library Manager - Add Library - Advanced - Add XJ_HSIO.

55

56

2-2. XS series high speed count instructions

2-2-1. Function overview

The XS series PLC has a high-speed counting function, which enables the measurement of high-speed input
signals such as measurement sensors and rotary encoders by selecting different counters. Its maximum
measurement frequency can reach 200kHz.
Note: The instruction library in this chapter is only supported for firmware versions XSDH and XSLH series
below V1.1.0.

2-2-2. Function block

2-2-2-1. Commands

Instruction Name Graph ST language

XJ_Counter
High speed

count

XJ_CounterGetValue
Read high

speed counter

XJ_CounterSetValue
Write high

speed counter

57

2-2-2-2. 【XJ_Counter】

(1) Input variables
Input

variables
Name Data type Effective

range
Initial
value

Description

Counter Counter COUNTER_REF - - High speed counter, which specifies the
input terminal and initial value of
high-speed counting

Enable Enable BOOL TRUE,FALSE FALSE Normally open the enable to start counting
Mode Count

mode
Mode AB_Mode，

Single_Mode
FALSE High speed count mode:

MODE=XJ.AB_Mode is AB phase high
speed count. MODE=XJ.Single_Mode is
single phase high speed count.

(2) Output variables
Output
variables

Name Data type Effective range Initial
value

Description

CounterValue Count value DINT Data range 0 High speed count value
Error Error flag BOOL TRUE,FALSE FALSE
ErrorID Error type UINT - 0

2-2-2-3. 【XJ_CounterGetValue】

(1) Input variables
Input

variables
Name Data type Effective range Initial

value
Description

Counter Counter COUNTER_REF - - High speed counter, which specifies the input
terminal and initial value of high-speed
counting

Execute Enable BOOL TRUE,FALSE FALSE Triggered by the rising edge, reading the
current high-speed count value

(2) Output variables
Output
variables

Name Data type Effective range Initial
value

Description

GetValue Read value DINT Data range 0 Present count value
Done Completion BOOL TRUE,FALSE FALSE After completing the read, the

flag is TRUE
Error Error flag BOOL TRUE,FALSE FALSE
ErrorID Error type UINT - 0

58

2-2-2-4. 【XJ_CounterSetValue】

(1) Input variables
Input

variables
Name Data type Effective range Initial

value
Description

Counter Counter COUNTER_REF - - High speed counter, which
specifies the input terminal and
initial value of high-speed
counting

Execute Enable BOOL TRUE,FALSE FALSE Trigger by rising edge, write
high-speed count value, write
SetValue in CounterValue

SetValue Write in value DINT Data range 0 Write high-speed counting set
value

(2) Output variables
Output
variables

Name Data type Effective range Initial
value

Description

Done Completion BOOL TRUE,FALSE FALSE After completing the write, the
flag bit is TRUE

Error Error flag BOOL TRUE,FALSE FALSE
ErrorID Error type UINT - 0

Note: If the value displayed for ErrorID is 2, it is because the CounterID range is not between 0 and 3.

(3) Function description
 The high-speed counting function has three functional blocks, namely the high-speed counting function

block, the read high-speed counting function block, and the write high-speed counting function block. XS3
series high-speed input can only receive differential signal (DIFF), but cannot receive Open collector
signal (OC). Please be sure to select differential signal encoder. XSDH series high-speed input is to receive
Open collector signal (OC).

 Counter is COUNTER_REF data type:
COUNTER_REF specific description is as follows:

Member Name Data type Effective range Initial
value

Description

CounterID Counter
terminal

INT 0,1,2,3 0 Select high-speed counter
input port

CounterValue Counter initial
value

DINT data range 0 Setting the initial value of the
counter

 The XS3 and XSDH series high-speed counting functions have two modes, namely single phase
incremental mode and AB phase mode.
(1) Mode= Single_Mode

In this mode, the input pulse signal is counted, and the count value increases with the rising edge of each pulse
signal.

(2) Mode=AB_Mode
In this mode, the high-speed counting value is incremented or decremented based on the pulse signal (A phase
and B phase) with a phase difference of 90°. The default counting mode is 4 times frequency.
 XS series high-speed counting input port allocation

59

XS3-26T4
Single phase mode AB phase mode

CounterID 0 1 2 3 0 1 2 3
Max

frequency
200k 200k 200k 200k 200k 200k 200k 200k

X0+ U+ A+
X0- U- A-
X1+ B+
X1- B-
X2
X3+ U+ A+
X1- U- A-
X4+ B+
X2- B-
X5
X6+ U+ A+
X6- U- A-
X7+ B+
X7- B-
X10
X11+ U+ A+
X11- U- A-
X12+ B+
X12- B-
X13

XSDH-60A32-E
Single phase mode AB phase mode

CounterID 0 1 2 3 0 1 2 3
Max

frequency
200k 200k 200k 200k 100k 100k 100k 100k

X0 U A
X1 B
X2
X3 U A
X4 B
X5
X6 U A
X7 B
X10
X11 U A
X12 B
X13

60

XSLH-30A32
Single phase mode AB phase mode

CounterID 0 1 2 3 0 1 2 3
Max

frequency
200k 200k 80k 80k 100k 100k 50k 50k

X0+ U+ A+
X0- U- A-
X1+ B+
X1- B-
X2
X3+ U+ A+
X1- U- A-
X4+ B+
X2- B-
X5
X6 U A
X7 B
X10
X11 U A
X12 B
X13
X14
X15

2-2-3. Parameter configuration

Add library file:
Add "XinjeCnt" in the "Library Manager", and after adding it, you can use the high-speed counting function.

61

2-2-4. Application example

Example 1: Use the first channel of high-speed count and read the current count value in the count to modify the
current high-speed count value.
Program operation:
(1) Install the required libraries according to the steps in sections 2-1-3.
(2) Write a high-speed counting program.
Programming: Use the function blocks "XJ.XJ_Counter", "XJ.XJ_CounterGetValue", and
"XJ.XJ_CounterSetValue" to set the high-speed counting port, high-speed counting mode, and high-speed
counting value used in the program.

62

2-3. External interrupt and compare consistent interrupt instructions

2-3-1. Function overview

The XSA series PLC supports X-terminal interrupt, and the same terminal supports rising and falling edge
interrupts. In Codesys, interrupts are used through external events in the task type. Like X2R_TRIG represents
X2 rising edge interrupt, X2F_TRIG represents the falling edge interrupt, and the number and type of interrupts
supported by each model can be found in the "External event" option.

Note: XSDH and XSLH models currently do not support this instruction library for external interrupts. Please
refer to the "XS Series PLCopen Standard Controller User Manual [Software Chapter]" manual for external
interrupts.

2-3-2. Function block

2-3-2-1. Instruction format

Command Name Graph ST language

XJ_EnableInterrupt

Open
external
interrupts

and compare
consistent
interrupts

XJ_WriteInterruptPara
meter

Interrupt
parameter
writing

2-3-2-2. Open external interrupts and compare consistent interrupts【XJ_EnableInterrupt】

(1) Input variables
Input

variables
Name Data type Effective range Initial

value
Description

xEnable Enable BOOL TRUE,FALSE FALSE Enable
udiExternal Open external input

interrupt
UINT 0

uiCompare Open compare
consistent interrupt

UINT 0 For example, 4 means
CounterID:=2

(2) Output variables
Output
variables

Name Data type Effective range Initial
value

Description

xValid Interruption
take effect

BOOL TRUE,FALSE FALSE After the interrupt takes effect,
the flag bit is TRUE

xBusy Running BOOL TRUE,FALSE FALSE
xError Error flag BOOL TRUE,FALSE FALSE

63

eErrorID Error type HSIO_ERROR - 0

 Open external input interrupt:
① Select external interrupt terminal, such as X1

② Open XJ_EnableInterrupt to add interrupt task, where 1 represents X0, 2 represents X1, 3 represents
X0, X1, and so on. As shown in the following figure, external interrupt tasks are executed when the rising edge
of X1 is effective.
That is, the udiExternal opens the external output interrupt and displays it as a binary address, and then gives a
value. For example, if you fill in binary 2#11 or decimal 10#3, then open X0 and X1. In the "Hardware
Parameter Configuration", you also need to check the required X0 and X1, which can be selected as "edge" or
"double edge". If there is a signal from X0 and X1, the task configured as "X0" or "X1" will execute the
program.

The port needs to be configured on both the interface and instructions to take effect.

64

 Open compare consistent interrupt:
Set the counter ID that needs to be opened, such as 3 indicating CounterID:=0 and CounterID:=1. In the case,
M210 and CounterID:=2 are used, so opening a compare consistent interrupt to write 4. After reaching the
comparison value, it will enter the task execution instruction of external events.

65

2-3-2-3. Write in interrupt parameters【XJ_WriteInterruptParameter】

(1) Input variables
Input

variables
Name Data type Effective range Initial

value
Description

Port Port no. UINT 0 Binary, such as 2#11 representing
X0 and X1

xExcute Trigger BOOL TRUE,FALSE FALSE
byValue Value BYTE 0

(2) Output variables
Output
variables

Name Data type Effective range Initial
value

Description

xDone Completed
flag

BOOL TRUE,FALSE FALSE After completing the setting, the
flag bit is TRUE

xBusy Running BOOL TRUE,FALSE FALSE
xError Error flag BOOL TRUE,FALSE FALSE
eErrorID Error type HSIO_ERROR - 0
External interrupt parameters can be configured on the interface or modified using the command.

 XJ_WritelnterruptParameter executed before XJ_Enablelnterrupt, then XJ_WritelnterruptParameter
parameters are valid.

 XJ_Enablelnterrupt executed before XJ_WritelnterruptParameter, background interrupt parameters are
valid. XJ_WritelnterruptParameter executed again, then XJ_WritelnterruptParameter parameters are valid.

 When executing this command, it is also necessary to open external input interrupts.

66

2-3-3. Parameter configuration

Add Library File: Library Manager - Add Library - Advanced - Add XJ_HSIO.

67

2-3-4. Application example

Double click “Task”, the type to "External" in the pop-up interface - use terminal X for external interrupts, and
you can also set the priority of external interrupt events.

Example 1: Use the 【XJ_EnnableInterrupt】【XJ_WriteInterruptParameter】instructions. Set X3 as an external
interrupt input, take its bilateral edge signal, which can be configured in the hardware parameter configuration
interface or using XJ_WriteInterruptParameter instruction. Execute the self adding 1 instruction in the POU
program under another task (configured as external, X3_TRIG) once the edge signal of X3 is given. The
parameter configuration and instructions are shown in the following figure.

68

69

2-4. PID instructions

Attention: The PID function block is copyrighted and can only be used on Xinje's PLC! Simulation not
available!

2-4-1. Command format

Command Name Graph ST language

XJ_PID.PID PID
instruction

2-4-2. Related variables

VAR_INPUT Name Data type Effective
range

Initial
value

Description

xEnable Enable BOOL TRUE/FALSE FALSE
Must be set to TRUE to
activate the processing
of the function block

iKp Proportional
gain INT 0~32767 0 Proportional gain

iTi Integral time INT 0~32767 0 Integral time (*100ms)

iTd Differential
time INT 0~32767 0 Differential time

(*10ms)

ePidType Tuning mode PIDTYPE - -
0: Manual mode;
1: Oscillation
Self-tuning mode

rSetValue Target value REAL Data range 0 *Target setting value
rCurrentValue Feedback value REAL Data range 0 *Present feedback value

udSmapleTime Sample time UDINT
Data range

1000
* Sampling time (ms)
Suggest setting between
1000 and 2000

70

VAR_INPUT Name Data type Effective
range

Initial
value

Description

iPIDBound Operational
range INT 0~32767 0 PID operation range

iDeadbaund Control
Deadband INT 0~32767 0 PID control dead zone

eAutoPidMode Self-tuning PID
control mode PID CONTRLMODE - -

Self-tuning PID mode
0: PID control;
1: PI control;
2: P control

eOutputType Output mode OUTPUTTYPE - - 0: IO channel output;
1: Digital output

ePidMode Control mode PIDMODE - - Control mode: general
mode, advanced mode

iFilter Input filtering
constant INT 0~100 0

Input filtering constant,
available in advanced
mode from 0 to 100

iKd Differential
gain INT - 50

Differential gain, default
is 50, available in
advanced mode

iHighOutLimit
Output upper
limit setting

value
INT 0~32767 0

Output upper limit
setting value (default:
4095)

iLowOutLimit
Output lower
limit setting

value
INT 0~32767 0 Output lower limit

setting value (default: 0)

eDirection
Reverse

action/forward
action

DIRECTIONPARAMETER - -

ATHWART: reverse
action (heating);
POSITIVE: Positive
action (cooling)

VAR_OUTPUT Name Data type Effective
range

Initial
value

Description

bOutpu Boolean output BOOL TRUE/FALSE FALSE IO output is TRUE
wOutput Digital output INT TRUE/FALSE FALSE Digital output is true

bSlefOkFlag Self-tuning
completion flag BOOL TRUE/FALSE FALSE The completion of

Self-tuning is TRUE
ActState Present mode AUTOPIDSTATE - - Present mode

eErrorId Error code ERRID_PID - -

When normal, the value
is 0. When an exception
occurs, an error code is
output

xError Error flag BOOL TRUE/FALSE FALSE True when an exception
occurs

2-4-3. Function description

 Direction of action
Positive action: The action where the output value MV of the operation increases with the increase of the
measured value PV, usually used for cooling control.
Reverse action: An action in which the output value MV decreases as the measured value PV increases, usually
used for heating control.

 Advanced mode setting: enable advanced mode, and users can set parameters such as filtering time,
differential gain, and output upper and lower limits.

 Sample time
The system samples the current value at a certain time interval and compares it with the output value. This time
interval is the sampling time T. When DA is output, T has no limit. When the port outputs, T must be greater
than 1 PLC program scan cycle. The value of T should be within the range of 100-1000 PLC scanning cycles.

71

 PID operation range
When the system is running, it is initially in the PID fully open stage, which approaches the target value at the
fastest speed (default is 4095). When it reaches the operating range of the PID, the parameters Kp, TI, and TD
begin to take control. As shown in the following figure:

When the user is not clear about the specific set value of PID parameters, the Self-tuning mode can be selected
to enable the system to automatically find the best control parameters (proportional gain Kp, integration time Ti,
differential time TD).

 Control object applicable to Self-tuning mode: temperature and pressure. Unsuitable control objects: liquid
level and flow rate, etc.

 Self-tuning is the process of extracting PID parameters. Sometimes Self-tuning can not find the best
parameters once, and it requires multiple Self-tuning. Oscillation in the process is normal. After
Self-tuning is completed and the best parameters are found, it is necessary to switch to manual PID. If the
control object is unstable during the manual PID process and cannot be controlled at a constant target value,
it may be caused by poor parameter adjustment, and it is necessary to adjust the PID parameters again to
achieve stable control.

 At the beginning of Self-tuning in critical oscillation method, the user needs to set the PID control cycle
(sampling time) in advance. Reference value: Generally, slow response systems can be set to 1000ms,
while fast response systems can be set to 10ms-100ms.

 By using the critical oscillation method for Self-tuning, the system can start from any state. For
temperature control objects, the current measured temperature does not need to be consistent with the
ambient temperature. It can be below or above the target temperature.

 For Self-tuning mode, it is necessary to set "ePidType" to TRUE, and select the pid mode (p, pi, pid).
When the setting is completed, switch xEnable status to TRUE, PLC will enter the Self-tuning status,
ActState status is AutoPidBusy, when "ActState" is AutoPidDone, it means Self-tuning is successful, and
"bSlefOkFlag" is true. After maintaining a cycle, PID status will automatically switch to CommonPID, at
this time, PID controls the control system in manual mode with Self-tuning parameters.

 Switching of output values. If the output value required by the user is a digital quantity, set the
eOutputType value to 1. If the output value required by the user is a switching quantity, set the
eOutputType value to 0.

72

2-4-4. Application example

Double click Library manager → add library →advanced.

Add XJ_PID.

73

Add temperature expansion module.

 Double click CPU Frame, select position 1, then double click XD-E6TC-P.

 Remote IO module: double click Network configuration, double click LC3-AP Ethercat adapter 3.1.1.

Note: Currently, only LC3-AP V3.1 and above support EC_From TO instruction.

Double click EtherCat Frame, select position 1, double click XL-E4PT3-P.

74

If a switch quantity control relay is needed, the module on the main body needs to set the Y_Function to 'Imm
Out'.

The module on remote IO needs to add the corresponding startup parameter to the default value of 1.

After modifying the module, the parameters need to be powered on again to take effect.

Define the required Global variable.

75

8. Define the required power-off retention variables so that data will not be lost after the PLC restarts.

9. Make the PID program.
① Convert the actual temperature value obtained from the temperature module into the correct temperature
display value. For example, if the transmitted data is 289, it needs to be divided by 10 to convert it into a
Floating-point number of 28.9, representing 28.9°, which is convenient for subsequent personnel to understand
and maintain. Due to the possibility of different on-site conditions requiring additional compensation, an
additional compensation value is added to obtain a final value. Use this final value to adjust the PID.

② Temperature alarm: When the actual temperature is too high or too low, as well as when there is an open
circuit, an alarm is required.

76

③ One key Self-tuning, when the "M_ Self-tuning switch" is on (it can be instantaneous, and it is forbidden to
be always on), all PID function blocks are in Self-tuning mode, which is convenient for batch debugging.

④ To enable Enable the PID function block, simply set ON M_PID. (Note: When modifying PID parameters,
be sure to turn off the PID enable!)

77

⑤ The PID Self-tuning time is about 15~25 minutes. After the Self-tuning is completed, iKp, iTi and iTd will
all have values. ePidype will automatically switch to "ManualType", the bSelfOKFlag flag will be on, and
ActState will display "AutoPIDrea" to facilitate the next Self-tuning.

78

10. The PID accuracy is around 2% of the set temperature. After actual measurement, the set temperature is
85 °C. With PID adjustment, the temperature has been maintained at 85±1 °C

79

2-5. System library

2-5-1. Function overview

Users can read or write system parameters of the controller through instructions. Currently only XSA330-W
supports this function.

2-5-2. Function block introduction

2-5-2-1. Command format

Command Name Graph representation ST language

XJ_GetCPUFrequency
CPU

dominant
frequency

XJ_GetCPUTemperatu
re

CPU
temperature

XJ_GetCPUUsage CPU
occupancy

XJ_GetMemSize Memory size

XJ_GetMemUsage Memory
occupancy

XJ_GetBootTime On time

XJ_GetPLCName PLC name

XJ_GetPLCID PLCID

XJ_GetPLCVersion
PLC

firmware
version

XJ_GetNetInfo
Obtain

network port
information

80

Command Name Graph representation ST language

XJ_SetNetInfo
Set network

port
information

XJ_GetRuntimeVersion Runtime
version

XJ_GetBootVersion BOOT
version

XJ_GetTime Obtain date
and time

XJ_SetTime Set date and
time

81

2-5-2-2. CPU dominant frequency【XJ_GetCPUFrequency】

(1) Output variables
Output variables Name Data type Effective

range
Initial
value

Description

GetCPUFrequency Error code SYS_XJ_ERR - 0 Error code
CPUFrequency CPU

dominant
frequency

UINT - 0 Unit is M

The execution results are as follows:

2-5-2-3. CPU temperature【XJ_GetCPUTemperature】

(1) Output variables
Output variables Name Data type Effective

range
Initial
value

Description

GetCPUTemperature Error code SYS_XJ_ERR - 0 Error code
CPUTemperature CPU

temperature
INT - 0 CPU temperature

The execution results are as follows:

2-5-2-4. CPU occupancy【XJ_GetCPUUsage】

(1) Output variables
Output variables Name Data type Effective

range
Initial
value

Description

GetCPUUsage Error code SYS_XJ_ERR - 0 Error code
CPUUsage CPU

occupancy
USINT - 0 Return percentage, 0~100

The execution results are as follows:

2-5-2-5. Memory size【XJ_GetMemSize】

(1) Output variables
Output variables Name Data type Effective

range
Initial
value

Description

GetMemSize Error code SYS_XJ_ERR - 0 Error code
MemSize Memory size UINT - 0 Unit is MB

The execution results are as follows:

82

2-5-2-6. Memory occupancy【XJ_GetMemUsage】

(1) Output variables
Output
variables

Name Data type Effective
range

Initial
value

Description

GetMemUsage Error code SYS_XJ_ERR - 0 Error code
MemUsage Memory

occupancy
USINT - 0 Return percentage, 0~100

The execution results are as follows:

2-5-2-7. On time【XJ_GetBootTime】

(1) Output variables
Output
variables

Name Data type Effective
range

Initial
value

Description

GetBootTime Error code SYS_XJ_ERR - 0 Error code
BootTime On time SYS_XJ_TIME - 0 structural morphology

The execution results are as follows:

83

2-5-2-8. PLC name【XJ_GetPLCName】

(1) Output variables
Output
variables

Name Data type Effective
range

Initial
value

Description

GetPLCName Error code SYS_XJ_ERR - 0 Error code
PLCName PLC name WSTRING - 0 PLC name

The execution results are as follows:

2-5-2-9. PLCID【XJ_GetPLCID】

(1) Output variables
Output
variables

Name Data type Effective range Initial
value

Description

GetPLCID Error code SYS_XJ_ERR - 0 Error code
PLCID PLCID DWORD - 0 PLCID information, hexadecimal

display
The execution result is as follows, and the PLCID information is displayed in hexadecimal:

84

2-5-2-10. Firmware version【XJ_GetPLCVersion】

(1) Output variables
Output
variables

Name Data type Effective
range

Initial
value

Description

GetPLCVersion Error code SYS_XJ_ERR - 0 Error code
PLCVersion PLC firmware

version
STRING - 0 PLC firmware version

The execution result is as follows:

2-5-2-11. Obtain network port information【XJ_GetNetInfo】

(1) Input variables
Input variables Name Data type Effective range Initial

value
Description

Enable Enable BOOL TRUE,FALSE FALSE Enable
EtherID Network port ID BYTE - 0 Corresponding network port no.

on the display screen

(2) Output variables
Output
variables

Name Data type Effective range Initial
value

Description

Valid Output valid BOOL TRUE,FALSE FALSE Output valid
Busy Executing BOOL TRUE,FALSE FALSE Executing
Error Error flag BOOL TRUE,FALSE FALSE Error flag
ErrorID Error code SYS_XJ_ERR - 0 Error code
IPAddress IP address STRING - 0 IP address
MAC MAC

address
STRING - 0 MAC address

Netmask Subnet
address

STRING - 0 Subnet address

Gateway Gateway
Information

STRING - 0 Gateway Information

DHCP DHCP BOOL TRUE，FALSE FALSE Is it automatic property

85

properties acquisition

The network port IDs of the industrial computer are arranged in 0-3 order from left to right in the network
adapter, as shown in the figure Ethernet1, and the IDs are written in 2.

The execution result is as follows：

2-5-2-12. Set network port information【XJ_SetNetInfo】

(1) Input variables
Input

variables
Name Data type Effective range Initial

value
Description

Excute Excute BOOL TRUE,FALSE FALSE Execute the function block at the
rising edge

EtherID Network port
ID

BYTE - 0 Corresponding network port on
the display screen

DPCH DPCH BOOL TRUE,FALSE FALSE Is it automatic property

86

property acquisition
IPAddress IP address STRING - 0 IP address
Netmask Subnet address STRING - 0 Subnet address
Gateway Gateway

information
STRING - 0 Gateway information

(2) Output variables
Output
variables

Name Data type Effective range Initial
value

Description

Done Execution
completed

BOOL TRUE,FALSE FALSE Execution completed

Busy Executing BOOL TRUE,FALSE FALSE Executing
Error Error flag BOOL TRUE,FALSE FALSE Error flag
ErrorID Error code SYS_XJ_ERR - 0 Error code

The modification will only take effect after powering off and restarting the PLC or RTE.

2-5-2-13. Runtime version【XJ_GetRuntimeVersion】

(1) Output variables
Output variables Name Data type Effective

range
Initial
value

Description

GetRuntimeVersion Error code SYS_XJ_ERR - 0 Error code
RuntimeVersion Runtim

version
DWORD - 0 Runtim version

The runtime version is viewed in hexadecimal.

87

2-5-2-14. BOOT version【XJ_GetBootVersion】

(1) Output variables
Output variables Name Data type Effective

range
Initial
value

Description

GetBootVersion Error code SYS_XJ_ERR - 0 Error code
BootVersion BOOT version STRNG - 0 BOOT version

The execution results are as follows:

2-5-2-15. Obtain date and time【XJ_GetTime】

(1) Output variables
Output
variables

Name Data type Effective
range

Initial
value

Description

GetTime Error code SYS_XJ_ERR - 0 Error code
Time Time SYS_XJ_TIME - 0 Structural morphology

TimeZone Get time zone INT - - Unit is minute
The execution results are as follows:

88

2-5-2-16. Set date and time【XJ_SetTime】

(1) Input variables
Input variables Name Data type Effective

range
Initial
value

Description

Time Set time SYS_XJ_TIME - 0 Set time
TimeZone Set time zone INT - -480 Unit is minute

(2) Output variables
Output
variables

Name Data type Effective
range

Initial
value

Description

SetTime Error code SYS_XJ_ERR - 0 Error code
The change in time takes effect immediately after writing. Due to the lack of conduction conditions, the time
remains unchanged after writing the time. The execution result is as follows:

The obtained time is consistent with the set time.

89

2-5-3. Parameter configuration

Add Library File: Library Manager - Add Library - Advanced - Add XJ_System.

90

91

2-6. ECAT_FROMTO

2-6-1. Function overview

Used for reading and writing module parameters on remote IO, for temperature modules and weighing modules.

2-6-2. Function block introduction

2-6-2-1. Instruction format

Command Name Graphical representation ST language

XJ_ECATFromTo.XJ_
EC_FROM

Remote IO
read

XJ_ECATFromTo.XJ_
EC_TO

Remote IO
write

2-6-2-2. Remote IO read【XJ_ECATFromTo.XJ_EC_FROM】

(1) Input variables

VAR_INPUT Name Data type Effective
range

Initial
value

Description

awValue Read value POINTER TO
WORD

- - The longest array length [0..100]

xExcute Rising edge
trigger

BOOL - -

iStationNumber Station no. UINT - ECAT station no., such as 1001
iModuleID Module no. INT 0-15 - One remote IO with a maximum

of 16 modules
iModuleAddress Module

address
DWORD - - Refer to the module address in

the expansion module manual
iNum Register

numbers
INT - - Number of consecutive Word

reads

92

(2) Output variables

VAR_OUTPUT Name Data type Effective range Initial
value

Description

xDone Boolean output BOOL TRUE,FALSE FALSE Read completed is TRUE
xBusy Boolean output BOOL TRUE,FALSE FALSE Reading is TRUE

xError Boolean output BOOL TRUE,FALSE FALSE True when an exception
occurs

eErrorID Present mode EC_FT_ERRID - -

When normal, the value is
0. When an exception
occurs, an error code is
output

2-6-2-3. Remote IO write【XJ_ECATFromTo.XJ_EC_TO】

(1) Input variables

VAR_INPUT Name Data type Effective
range

Initial
value

Description

awValue write in value POINTER TO WORD - - The longest array length
[0..100]

xExcute Rising edge
trigger

BOOL - -

iStationNumber Station no. UINT - ECAT station no., such as
1001

iModuleID Module no. INT 0-15 - One remote IO with a
maximum of 16 modules

iModuleAddress Module
address

DWORD - - Refer to the module address
in the expansion module
manual

iNum Register
numbers

INT - - Number of consecutive
Word writes

(2) Output variables

VAR_OUTPUT Name Data type Effective range Initial
value

Description

xDone Boolean
output BOOL TRUE,FALSE FALSE Write completed is TRUE

xBusy Boolean
output BOOL TRUE,FALSE FALSE Writing is TRUE

xError Boolean
output BOOL TRUE,FALSE FALSE True when an exception

occurs

eErrorID Present
mode EC_FT_ERRID - -

When normal, the value is
0. When an exception
occurs, an error code is
output

93

2-6-3. Parameter configuration

94

95

2-6-4. Application

96

3. Motion instructions
3-1. Single axis

3-1-1. Single axis instruction overview

Command Function
MC_Power Put the axis into a runnable state
MC_Reset Reset axis internal related errors
MC_Stop Stop controller movement
MC_Halt Pause the execution of functional blocks in progress
MC_Home Homing
MC_Jog Jog run
MC_MoveAbsolute Implement a control axis to reach the specified absolute position
MC_MoveAdditive Accelerate to move an additional distance at a given speed
MC_MoveRelative Move the axis to a relative position from the current axis position

MC_MoveSuperImposed Based on the previous motion, the superimposed velocity and acceleration
run an additional distance

MC_MoveVelocity The shaft continues to operate at a specified speed
MC_PositionProfile Perform movements according to time-location planning
MC_VeloctyProfile Perform movements according to time-velocity planning
MC_AccelerationProfile Perform movements according to time-acceleration planning
MC_ReadActualPosition Reads the current position of the current relevant axis
MC_ReadActualTorque Reads the current torque of the current relevant axis
MC_ReadActualVlocity Reads the current speed of the current related axis
MC_ReadAxisError Obtain the error code
MC_ReadBoolParameter Obtain parameter values based on parameter serial number
MC_ReadParameter Obtain the parameter value based on the parameter ID
SMC_ReadSetPosition Reads the set position of the current axis
SMC_ReadFBError Read the historical error information of the function block

MC_WriteBoolParameter Modify the parameter values of a specific Boolean variable specified by the
user

MC_WriteParameter Modify a special parameter specified by a user
SMC_ClearFBError Clear historical error information of the function block
SMC_ErrorString Read the error description corresponding to the error code
SMC3_ReinitDrive Re-invoke the drive/axis
SMC3_ETC_WriteParameter_CoE Set COE parameters for the axis
MC_TouchProbe Probe instruction

97

3-1-2. Single axis instructions

3-1-2-1. Axis enable [MC_Power]

(1) Instruction overview
It is used to enable a specified axis to enter or exit the runable state, also called axis enable.

Instruction Name Graphic representation ST language

MC_Power Axis enable

(2) Related variables

VAR_IN_OUT Name Data type Effective range Initial
value

Description

Axis Axis AXIS_REF_SM3 - - Specified axis

VAR_INPUT Name Data type Effective range Initial
value

Description

Enable Valid BOOL TRUE,FALSE FALSE
Must be set to TRUE to
activate processing of
function blocks

bRegulatorOn Enable BOOL TRUE,FALSE FALSE Must be set to TRUE to
enable the function block

bDriveStart Enable
drive BOOL TRUE,FALSE FALSE

Must be set to TRUE to turn
off emergency stop
processing for function
blocks

VAR_OUTPUT Name Data type Effective range Initial
value

Description

Status Can run BOOL TRUE,FALSE FALSE TRUE if the axis is ready

bRegulatorRealState Enable
valid BOOL TRUE,FALSE FALSE Active status of the axis

enablement

bDriveStartRealState Drive can
be used BOOL TRUE,FALSE FALSE

The drive is not interrupted
by the quick stop
mechanism is TRUE

Busy Executing BOOL TRUE,FALSE FALSE
The processing of the
function block did not
complete is TRUE

Error Error BOOL TRUE,FALSE FALSE TRUE if an exception
occurs

ErrorID Error code SMC_ERROR - 0

In normal cases, the value is
0. When an exception
occurs, an error code is
displayed

(3) Function description
 Processes the input only if Enable is TRUE.
 Call MC_Power with bRegulatoron = FALSE to set nAxisState of the reference axis to state (disabled)

off. Then the axis can't move.
 If there are no errors on the disabled axis, call MC_Power with bRegulatorOn = TRUE, sets its

AxisState to pause.
 If an error is detected, set the axis status to errorstop.
 If the input Enable, bRegulatoron and bDrivestart are TRUE, but the output Status remains FALSE for

a long time, there may be a drive power-level hardware problem. If the power supply fails (also

98

during operation), the nAxisState of the reference axis is set to errorstop.

3-1-2-2. Axis reset [MC_Reset]

(1) Instruction overview

Clear the axis error.
Instruction Name Graphic representation ST language

MC_Reset Axis reset

(2) Related variables
VAR_IN_OUT Name Data type Effective range Initial

value
Description

Axis Axis AXIS_REF_SM3 - - Specified axis

VAR_INPUT Name Data type Effective range Initial
value

Description

Execute Valid BOOL TRUE,FALSE FALSE
The rising edge of the input value
initiates the execution of the function
block

VAR_OUTPUT Name Data type Effective range Initial
value

Description

Done Done BOOL TRUE,FALSE FALSE TRUE if the reset is performed

Busy Executing BOOL TRUE,FALSE FALSE TRUE when the function block
execution has not finished

Error Error BOOL TRUE,FALSE FALSE Function block execution error
ErrorID Error code SMC_ERROR - 0 Error recognition

(3) Function description
 When the shaft communication is normal, change the axis state from errorstop to Standstill, turns the

abnormal state of the axis to the normal running state.
 The function block returns the error SMC_R_NO_ERROR_TO_RESET when called in a state other

than errorstop.

99

3-1-2-3. Stop controller motion [MC_Stop]

(1) Instruction overview

Deceleration stop the axis.
Instruction Name Graphic representation ST language

MC_Stop Forced stop

(2) Related variables

VAR_IN_OUT Name Data type Effective range Initial
value

Description

Axis Axis AXIS_REF_SM3 - - Specified axis

VAR_INPUT Name Data type Effective range Initial
value

Description

Execute Valid BOOL TRUE/FALSE FALSE Trigger the axis motion at rising edge

Deceleration Deceleration
speed LREAL Positive value 0 Deceleration speed. the unit is

[command unit/s2]
Jerk Jerk LREAL Positive value 0 Jerk. the unit is [command unit/s3]

VAR_OUTPUT Name Data type Effective range Initial
value

Description

Done Done BOOL TRUE/FALSE FALSE Becomes TRUE upon completion of
execution

Busy Executing BOOL TRUE/FALSE FALSE Becomes TRUE after receiving
instruction

Error Error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID Error code SMC_ERROR - 0 Error recognition

(3) Function description
 MC_Stop Sets the axis to the stop state. Therefore, the motion of the currently running function block

instance is aborted. The only exception is a running Mc_Stop instance, which will not be aborted.
Instead, the MC_Stop instance that was just started returns an error.)

 As long as the axis is in the stopped state, no other instance can perform motion on it. If the axis
reaches the speed value of zero, the Done output is set to TRUE. As long as the Execute input is
TRUE, the axis remains stop. If Execute goes to FALSE and the Done output is TRUE, the axis goes
to a standstill.

100

3-1-2-4. Pasue the motion [MC_Halt]

(1) Instruction overview

Slow down to stop the movement being performed by the axis, and the stopped movement can resume the
unfinished part of the execution.

Instruction Name Graphic representation ST language

MC_Halt
Pause the
motion

(2) Related variables

VAR_IN_OUT
Name Data type

Effective
range

Initial
value

Description

Axis Axis AXIS_REF_SM3 - - Specified axis

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Execute Valid BOOL TRUE/FALSE FALSE Start execution at rising edge

Deceleration
Deceleration

speed
LREAL

Positive
value

0
Deceleration speed. the unit is
[command unit/s2]

Jerk Jerk LREAL
Positive
value

0 Jerk. the unit is [command unit/s3]

VAR_OUTPUT Name Data type
Effective
range

Initial
value

Description

Done Done BOOL TRUE/FALSE FALSE
Becomes TRUE upon completion of
execution

Busy Executing BOOL TRUE/FALSE FALSE
TRUE when the function block
execution has not finished

CommandAborted
Instruction
interrupted

BOOL TRUE/FALSE FALSE
TRUE if the command has been
terminated by another command

Error Error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID Error code SMC_ERROR - 0 Error recognition

(3) Function description

 This function block stops referencing axes in a controlled manner. If operations of other function blocks
are running at this time, the operation is aborted. The axis enters discrete motion until it reaches velocity 0.
If the Done output of MC_Halt is set, the axis comes to a standstill. As long as MC_Halt is active, a new
motion command can be issued to interrupt the execution of MC_Halt. Unlike MC_Stop, MC_Halt can be
interrupted.

101

3-1-2-5. Axis homing [MC_Home]

(1) Instruction overview

This command executes the pulse motor homing action, and the specific homing process is determined by the
homing mode designed by the bus driver.

Instruction Name Graphic representation ST language

MC_Home axis homing

(2) Related variables

VAR_IN_OUT Name Data type Effective
range

Initial
value

Description

Axis Axis AXIS_REF_SM3 - - Specified axis

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Execute Valid BOOL TRUE/FALSE FALSE Execute at the rising edge

Position
Axis reached
location

LREAL Data range 0
Represents the homing position of the
axis

VAR_OUTPUT Name Data type
Effective
range

Initial
value

Description

Done Completed BOOL TRUE/FALSE FALSE
Change to TRUE upon completion of
execution

Busy Executing BOOL TRUE/FALSE FALSE
True when the execution of the
function block has not yet ended

CommandAborted
Command is
interrupted

BOOL TRUE/FALSE FALSE
True if the command has been
terminated by another command

Error Error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID Error code SMC_ERROR - 0 Error recognition

(3) Function

 This function block is for homing operation, and the position is the zero position of the axis.
 The running status of this function block is in Standstill, and the state of the instruction running is homing.

Other states cannot be run.
 Start the instruction at the rising edge of Execute.
 Before executing the homing, it is necessary to configure the bus driver homing parameters, such as

homing mode, speed, acceleration, etc. Please refer to the driver manual. For example, DS5C1 series servo
driver user manual chapter 6.5 HM mode.

 The general bus driver needs to set the index and sub index data as shown in the table below for returning
to zero:

Index Sub index Explanation
0x6098 00h Homing mode

102

Index Sub index Explanation
0x6099 01h The speed of the process from starting to homing to finding zero point,

with a higher value to reduce the homing time
0x6099 02h The speed of the process from finding zero point to homing completed,

with lower values to improve accuracy
0x609A 00h Homing acceleration

(4) Application example

Example 1: Taking the Xinje DS5C servo as an example, the specified axis homing in homing mode 1. P5-22 is
the positive limit setting address, with a default value of 1, which corresponds to the servo terminal SI1. P5-23
is the negative limit setting address, with a default value of 2, which corresponds to the servo terminal SI2.
P5-27 sets the address for the origin, with a default value of 3, which corresponds to the servo terminal SI3.
Make the program:
Select [expert settings], select 1601 in [Expert process data] – [PDO assignment], add 6098h, 609Ah in 1601.

The new added parameters can be seen in [EtherCAT I/O mapping].

103

Read the homing speed in 6099h through SMC3_ETC_ReadParameter_CoE, set homing mode 1 in [Ethercat
I/O mapping], homing acceleration set to 13107200, after enabling through MC_Power, set ON the function
block MC_Home, then give SI1 signal.

Check the homing speed through Trace.

104

3-1-2-6. Jog run [MC_Jog]

(1) Instruction overview

This command is used to manually control the axis movement in the specified direction.
Instruction Name Graphic representation ST language

MC_Jog Jog run

(2) Related variables

VAR_IN_OUT Name Data type
Effective
range

Initial
value

Description

Axis Axis AXIS_REF_SM3 - - Specified axis

105

VAR_IN_OUT Name Data type
Effective
range

Initial
value

Description

JogForward
Forward jog

run
BOOL TRUE/FALSE FALSE

If JogForward is TRUE, the axis will
move forward with the given parameters
(Velocity, Acceleration, Deceleration,
and Jerk), and if JogBackward is also
TRUE, the axis will not move

JogBackward
Reverse jog

run
BOOL TRUE/FALSE FALSE

If JogBackward is TRUE, the axis will
move reverse with the given parameters
(Velocity, Acceleration, Deceleration,
and Jerk), and if JogForward is both
TRUE, the axis will not move

Velocity Target speed LREAL
0, positive
number

0 Maximum speed [u/s]

Acceleration
Target

acceleration
speed

LREAL
positive
number 0 Acceleration value [u/s2]

Deceleration
Target

deceleration
speed

LREAL
positive
number 0 Deceleration value [u/s2]

Jerk
Target jerk
speed

LREAL
positive
number

0 Jerk value [u/s3]

VAR_OUTPUT Name Data type
Effective
range

Initial
value

Description

Busy Executing BOOL TRUE/FALSE FALSE
True when the execution of the function
block has not yet ended

CommandAborted
Instruction
interrupted

BOOL TRUE/FALSE FALSE
True if the command has been
terminated by another command

Error Error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID Error code SMC_ERROR - 0 Error indentification

(3) Function description

 Perform jog operation according to the specified Velocity (target speed).
 When forward operation is required, set JogForward (valid for forward operation) to TRUE; When reverse

running is required, set JogBackward (valid for negative running) to TRUE.
 Setting both JogForward (positive running valid) and JogBackward (negative running valid) to TRUE will

prevent any movement from occurring. If MC_Jog command speed setting exceeds the maximum jog
speed in the axis parameters, it will be executed at the maximum jog speed.

106

3-1-2-7. Absolute position [MC_MoveAbsolute]

(1) Instruction overview

This command is used to move the control axis to the specified absolute position according to the set
parameters.

Instruction Name Graphic representation ST language

MC_MoveAbsolute
absolute
position

(2) Related variables

VAR_IN_OUT
Name Data type

Effective
range

Initial
value

Description

Axis Axis AXIS_REF_SM3 - - Specified axis

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Execute Valid BOOL TRUE/FALSE FALSE Starting execution at the rising edge
Position Position LREAL Data range 0 Target position of motion

Velocity Target speed LREAL
0, positive
number

0 Maximum speed [u/s]

Acceleration
Target

acceleration
speed

LREAL
positive
number

0 Acceleration value [u/s2]

Deceleration
Target

deceleration
speed

LREAL
positive
number

0 Deceleration value [u/s2]

Jerk
Target jerk
speed

LREAL
positive
number

0 Jerk value [u/s3]

Direction Direction MC_DIRECTION

3: fastest
2: current
1: Positive
0: shortest
-1: Negative

0

Fastest: Automatically select the
fastest direction to move
Current: Move in the current
direction
Positive: Forward run
Shortest: Select direction based on
the shortest path

107

VAR_IN_OUT
Name Data type

Effective
range

Initial
value

Description

Negative: Reverse run

BufferMode Buffer mode
MC_BUFFER_

MODE
- 0

If the function block is Busy, only
BufferMode=Aborting is allowed

VAR_OUTPUT Name Data type
Effective
range

Initial
value

Description

Done Completed BOOL TRUE/FALSE FALSE TRUE after execution is completed

Busy Executing BOOL TRUE/FALSE FALSE
True when the execution of the
function block has not yet ended

Active In control BOOL TRUE/FALSE FALSE Change to TRUE in control

CommandAborted
Instruction
interrupted

BOOL TRUE/FALSE FALSE
True if the command has been
terminated by another command

Error Error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID Error code SMC_ERROR - 0 Error indentification

(3) Function description

 This function block moves the shaft to an absolute position and uses the values of speed, deceleration,
acceleration, and jerk. If not set, the instruction will end at speed 0 after execution. (i.e. standstill
state)

 The start command start at the rising edge of Execute.

108

3-1-2-8. Position overlay [MC_MoveAdditive]

(1) Instruction overview

The axis is overlaid with the data specified by Distance on the original command position, which is used for
online stacking position during the motion axis control process.

Instruction Name Graphic representation ST language

MC_MoveAdditive
Position
overlay

(2) Related variables

VAR_IN_OUT
Name Data type

Effective
range

Initial
value

Description

Axis Axis AXIS_REF_SM3 - - Specified axis

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Execute Valid BOOL TRUE/FALSE FALSE Starting execution at the rising edge
Distance Position LREAL Data range 0 This data is stacked position data

Velocity Target speed LREAL
0, positive
number

0 Maximum speed [u/s]

Acceleration
Target

acceleration
speed

LREAL
positive
number

0 Acceleration value [u/s2]

Deceleration
Target

deceleration
speed

LREAL
positive
number

0 Deceleration value [u/s2]

Jerk
Target jerk
speed

LREAL
positive
number

0 Jerk value [u/s3]

VAR_OUTPUT Name Data type
Effective
range

Initial
value

Description

Done Completed BOOL TRUE/FALSE FALSE TRUE after execution is completed

Busy Executing BOOL TRUE/FALSE FALSE
True when the execution of the
function block has not yet ended

CommandAborted
Instruction
interrupted

BOOL TRUE/FALSE FALSE
True if the command has been
terminated by another command

Error Error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID Error code SMC_ERROR - 0 Error indentification

(3) Function description

109

 This function block is a stacking position command, and the Distance data is the stacking data of the
axis;

 If the running status of this function block is Discrete Motion, the CommandAbort of other
instructions will be set ON during usage;

 In the standstill state, this instruction can run independently to achieve relative positioning
requirements;

 Acceleration or Deceleration is zero, and the instruction operation is in an abnormal state, but the state
of the axis is Discrete Motion;

 The start command will start at the rising edge of Execute.

(4) Application example

Example 1: It can be directly used and run through "MC_MoveAdditive" after "MC_Power" is enabled.

① Programming: You can first set the position to 0 through "MC_SetPosition", enable it, and then set ON MC_
MoveAdditive, can be configured to run at a speed of 10 and at a position of 100.

② The position and speed of operation can be seen through Trace.

110

Example 2: After "MC_Power" is enabled, execute "MC_MoveRelative" first, and then "MC-MoveAdditive".

① Write a program: "MC_MoveRelative" is executed at a speed of 5 and a target position of 100. It can be
turned on during operation or after waiting for the execution of "MC_MoveRelative" to complete. The speed set
for "MC_MoveAdditive" is 10 and the target position is 100. The execution speed after turning on is 10 and the
final position is 100. That is, the position is superimposed, and the acceleration is not superimposed, only the
velocity is reset.

111

② The current speed and position can be monitored through trace.

3-1-2-9. Relative position [MC_MoveRelative]

(1) Instruction overview

The axis runs in relative position, which is specified by Distance.
Instruction Name Graphic representation ST language

MC_MoveRelative
Relative
position

(2) Related variables

VAR_IN_OUT
Name Data type

Effective
range

Initial
value

Description

Axis Axis AXIS_REF_SM3 - - Specified axis

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

112

VAR_IN_OUT
Name Data type

Effective
range

Initial
value

Description

Execute Valid BOOL TRUE/FALSE FALSE
Starting execution at the rising
edge

Distance Position LREAL Data range 0
The relative distance between the
target and its current position

Velocity Target speed LREAL
0, positive
number

0 Maximum speed [u/s]

Acceleration
Target

acceleration
speed

LREAL
positive
number

0 Acceleration value [u/s2]

Deceleration
Target

deceleration
speed

LREAL
positive
number

0 Deceleration value [u/s2]

Jerk
Target jerk
speed

LREAL
positive
number

0 Jerk value [u/s3]

BufferMode Buffer mode MC_BUFFER_MODE - 0
If the function block is Busy, only
BufferMode=Aborting is allowed

VAR_OUTPUT Name Data type
Effective
range

Initial
value

Description

Done Completed BOOL TRUE/FALSE FALSE
TRUE after execution is
completed

Busy Executing BOOL TRUE/FALSE FALSE
True when the execution of the
function block has not yet ended

Active In control BOOL TRUE/FALSE FALSE Change to TRUE in control

CommandAborted
Instruction
interrupted

BOOL TRUE/FALSE FALSE
True if the command has been
terminated by another command

Error Error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID Error code SMC_ERROR - 0 Error recognition

 The running status of this function block is in Standstill, and the state of the instruction during execution is
Discrete Motion. Pay attention to the running status of this axis during instruction execution to avoid
interrupting other instructions on this axis or being interrupted by other instructions.

 The start command will start at the rising edge of Execute. This command is valid for repeated rising edges
in Discrete Motion, and can refresh the latest Position every time.

 Acceleration or Deceleration is zero, and the instruction operation is in an abnormal state, but the state of
the axis is Discrete Motion;

 Trapezoidal acceleration and deceleration action
Velocity, Acceleration and Deceleration have value but Jerk is 0.

113

 S curve acceleration and deceleration action
Velocity, Acceleration, Deceleration and Jerk have value.

3-1-2-10. Superimposed relative motion command [MC_MoveSuperImposed]

(1) Instruction overview

The speed and position data of the axis are superimposed on the running command based on the original
command speed and position.

Instruction Name Graphic representation ST language

MC_MoveSuperImposed

Superimp-
osed

relative
motion
command

(2) Related variables

VAR_IN_OUT
Name Data type

Effective
range

Initial
value

Description

Axis Axis AXIS_REF_SM3 - - Specified axis

114

VAR_IN_OUT
Name Data type

Effective
range

Initial
value

Description

Execute Valid BOOL TRUE/FALSE FALSE Starting execution at the rising edge

Abort Abort BOOL TRUE/FALSE FALSE
Abort ongoing motion and reset all
outputs

Distance Position LREAL Data range 0 This data is stacked position data

VelocityDiff
Stacking
velocity

LREAL
0, positive
number

0
Maximum velocity of superimposed
motion [u/s]

Acceleration
Target

acceleration
speed

LREAL
positive
number

0 Acceleration value [u/s2]

Deceleration
Target

deceleration
speed

LREAL
positive
number

0 Deceleration value [u/s2]

Jerk
Target jerk
speed

LREAL
positive
number

0 Jerk value [u/s3]

VAR_OUTPUT Name Data type
Effective
range

Initial
value

Description

Done Completed BOOL TRUE/FALSE FALSE TRUE after execution is completed

Busy Executing BOOL TRUE/FALSE FALSE
True when the execution of the
function block has not yet ended

CommandAborted
Instruction
interrupted

BOOL TRUE/FALSE FALSE
True if the command has been
terminated by another command

Error Error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID Error code SMC_ERROR - 0 Error recognition

(3) Function description

 This function block is for stacking position and speed commands, while VelocityDiff and Distance
represent the speed and position stacked on other commands, respectively;

 MC_ MoveSuperImposed can be superimposed on any other instruction;
 MC_ MoveSuperImposed can also be aborted by MC_ MoveSuperImposed;
 In the StandStill state, the function block MC_ MoveSuperimposed is similar to MC_ MoveRelative;
 The start command will start at the rising edge of Execute.

(4) Application

Example 1: It can directly run through "MC_MoveSuperImposed" after "MC_Power" is enabled.

Programming: You can first set the position to 0 through "MC_SetPosition", enable it, and then conduct MC_
MoveSuperImplied, can be configured with a running speed of 10 and a running position of 100.

115

The current speed and position can be monitored through trace.

116

Example 2: After "MC_Power" is enabled, execute "MC_MoveRelative" first, and then
"MC_MoveSuperImposed".

Programming: "MC_MoveRelative" is executed at a speed of 5u/s and a target position of 100u.
MC_MoveSuperImposed can be turned on during operation or after waiting for the execution of
"MC_MoveRelative" to complete. The speed set for "MC_MoveSuperImposed" is 10u/s and the target position
is 100u. The position after turning on is the sum of the target positions set in the two instructions.
MC_MoveSuperImposed instruction overlays both position and speed.

The current speed and position can be monitored through trace.

117

3-1-2-11. Speed control [MC_MoveVelocity]

(1) Instruction overview

This function block moves infinitely at a specified speed.
Instruction Name Graphic representation ST language

MC_MoveVelocity
Speed control
command

(2) Related variables

VAR_IN_OUT
Name Data type

Effective
range

Initial
value

Description

Axis Axis AXIS_REF_SM3 - - Specified axis

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Execute Valid BOOL TRUE/FALSE FALSE Starting execution at the rising edge

Velocity Speed LREAL
0, positive
value

0 Speed operation value [u/s]

Acceleration
Target

acceleration
speed

LREAL
0, positive
value 0 Acceleration value [u/s2]

Deceleration
Target

deceleration
speed

LREAL
0, positive
value 0 Deceleration value [u/s2]

Jerk
Target jerk
speed

LREAL
0, positive
value

0 Jerk value [u/s3]

Direction Direction MC_DIRECTION

3: fastest
2: current
1: Positive
0: shortest
-1: Negative

0

Fastest: Automatically select the
fastest direction to move
Current: Move in the current
direction
Positive: move forward
Shortest: Select direction based on
the shortest path
Negative: move reverse

BufferMode Buffer mode MC_BUFFER_MODE - 0 If the function block is Busy, only

118

VAR_IN_OUT
Name Data type

Effective
range

Initial
value

Description

BufferMode=Aborting is allowed
VAR_OUTPU

T
Name Data type

Effective
range

Initial
value

Description

InVelocity
Flag for

reaching the
set speed

BOOL TRUE/FALSE FALSE
After reaching the set speed, it is set
to TRUE

Busy Executing BOOL TRUE/FALSE FALSE
True when the execution of the
function block has not yet ended

Active In control BOOL TRUE/FALSE FALSE Change to TRUE in control
Command
Aborted

Command is
aborted

BOOL TRUE/FALSE FALSE
True if the command has been
terminated by another command

Error Error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID Error code SMC_ERROR - 0 Error recognition

(3) Function description

 Change the Velocity parameter to control the speed of the drive.
 The execution of the function block must have a condition of rising edge.
 The InVelocity of the function block indicates that the operating speed of the instruction has reached

the set value.
 The Busy of the function block indicates that the current function block is currently executing.

3-1-2-12. Position profile [MC_PositionProfile]

(1) Instruction overview

Users can plan their own "time - position" data table, and the controller will complete the motion according to
the planned data.

Instruction Name Graphic representation ST language

MC_PositionProfile
Position
profile

command

(2) Related variables

VAR_IN_OUT Name Data type
Effective
range

Initial
value

Description

Axis Axis AXIS_REF_SM3 - - Specified axis
TimePosition Data table MC_TP_REF - - User planned time location data table

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

119

VAR_IN_OUT Name Data type
Effective
range

Initial
value

Description

Execute Valid BOOL TRUE/FALSE FALSE Starting execution at the rising edge

ArraySize Dynamic array INT Positive value 0
Number of arrays used in the running
profile

PositionScale
Comprehensive

factor
LREAL Data range 1 Overall Position Scale Factor

Offset Offset LREAL Data range 0 Position offset

VAR_OUTPUT Name Data type
Effective
range

Initial
value

Description

Done Completed BOOL TRUE/FALSE FALSE TRUE after execution is completed

Busy Executing BOOL TRUE/FALSE FALSE
True when the execution of the
function block has not yet ended

CommandAborted
Command is
aborted

BOOL TRUE/FALSE FALSE
True if the command has been
terminated by another command

Error Error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID Error code SMC_ERROR - 0 Error recognition

(3) Function description

 This function block is a profile motion model for time periods and positions, running in Discrete
Motion mode according to the data set by the user in the TimePosition variable.

 The running status of this function block is in Standstills, and the state of the instruction running is
Discrete Motion. Other states cannot be run.

 The command starts at the rising edge of Execute, and this command runs repeatedly in Discrete
Motion.

 TimePosition is MC_ TP_ REF data type;
The specific description of MC_TP_REF is as follows:

Member Type
Initial
value

Description

Number_of_pairs INT 0 Number of segments in the contour path

IsAbsolute BOOL TRUE
Absolute motion (TRUE) and relative motion

selection
MC_TP_ArrayARRAY[1..N] OF

SMC_TP
Array of time and location

The specific description of SMC_TP is as follows;
Member Type Initial value Description
delta_time TIME TIME#0ms Time of position segment
position LREAL 0 Current position value

Note: When the speed corresponding to the set position data changes, relevant adjustments are made
according to the S-curve.

(4) Application

Example 1: Set the execution of three segments and set them as relative motion. The first segment runs at a
position of 10 within 1 second, the second segment runs at a position of 20 within 5 seconds, and the third
segment runs at a position of 30 within 6 seconds. The total duration of these three segments is 12 seconds, and
the total distance of execution is 60.

Write a program using the "MC_Power" and "MC_PositionProfile" instructions, enable it, and then set and run
the three segments as the command MC_ PositionProfile. Set the position to 0 through the command

120

MC_SetPosition before executing. In ACT (Action Properties of POU), set the time and position.

You can set 'Trace' to view the execution time and location.

121

122

3-1-2-13. Speed profile [MC_VelocityProfile]

(1) Instruction overview

Similar to MC_PositionProfile, MC_VelocityProfile plans motion by defining "time - velocity" data.
Instruction Name Graphic representation ST language

MC_VelocityProfile
Speed profile
command

(2) Related variables

VAR_IN_OUT Name Data type
Effective
range

Initial
value

Description

Axis Axis AXIS_REF_SM3 - - Specified axis
TimePosition Data table MC_TP_REF - - User planned time - speed data table

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Execute Valid BOOL TRUE/FALSE FALSE Starting execution at the rising edge

ArraySize
Dynamic
array

INT Positive value 0
Number of arrays used in the running
profile

VelocityScale Speed factor LREAL Data range 1 Scale factor of speed
Offset Offset LREAL Data range 0 Speed offset

VAR_OUTPUT Name Data type
Effective
range

Initial
value

Description

Done Completed BOOL TRUE/FALSE FALSE TRUE after execution is completed

Busy Executing BOOL TRUE/FALSE FALSE
True when the execution of the function
block has not yet ended

CommandAborted
Command is
aborted

BOOL TRUE/FALSE FALSE
True if the command has been
terminated by another command

Error Error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID Error code SMC_ERROR - 0 Error recognition

(3) Function description

 This function block is a contour motion model for time periods and speeds, running in Continuous
Motion mode according to the data set by the user in the TimeVelocity variable.

 The running status of this function block is in Standstills, and the state of the instruction running is
Discrete Motion. Other states cannot be run.

 The command will start at the rising edge of Execute, this instruction runs repeatedly in Discrete
Motion.

 TimeVelocity is MC_TV_REF data type:
The detail description of MC_TP_REF is as follows:

Member Type Initial Description

123

value
Number_of_pairs INT 0 Number of segments in the contour path

IsAbsolute BOOL TRUE
Absolute motion (TRUE) and relative motion

selection
MC_TP_ArrayARRAY[1..N] OF

SMC_TP
Array of time and location

The detail description of SMC_TP is as follows:
Member Type Initial value Description
delta_time TIME TIME#0ms Time of position segment
position LREAL 0 Current position value

Note: The entire speed process is calculated using an S-curve acceleration and deceleration method, and the
speed of each contour segment is calculated using a superposition method; When instructions are repeatedly run,
the speed is also stacked to avoid exceeding the speed limit during instruction usage; Repeated operation must
return the state of this axis to the Standstill state.

(4) Application

Example 1: Set the execution of three segments, with absolute motion. The first segment reaches a speed of 2
after 3 seconds, the second segment reaches a speed of 2 after 4 seconds, and the third segment reaches a speed
of 2 after 5 seconds. The total duration of these three segments is 12 seconds, and the final execution speed is 2.

Make the program by using “MC_Power”, “MC_VelocityProfile”, “MC_Stop” instructions. After enabled, run
the three segments as the command setting of MC_VelocityProfile. In ACT (POU action), set the time and
speed.

124

You can view time and speed in
Trace.

Note: when MC_VelocityProfile is Done, the speed is not 0. So you need to add STOP or other operation and
control commands later.

125

3-1-2-14. Acceleration profile [MC_AccelerationProfile]

(1) Instruction overview

Simliar toMC_PositionProfile instruction, MC_AccelerationProfile plans motion by defining "time -
acceleration" data.

Instruction Name Graphic representation ST language

MC_AccelerationProfile
Acceleration
profile comand

(2) Related variables

VAR_IN_OUT Name Data type
Effective
range

Initial
value

Description

Axis Axis AXIS_REF_SM3 - - Specified axis
TimeAcceleration Data table MC_TA_REF - - Reference time/acceleration description

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Execute Valid BOOL TRUE/FALSE FALSE Starting execution at the rising edge

ArraySize Dynamic array INT Positive value 0
Number of arrays used in the running
profile

AccelerationScale
Comprehensive

factor
LREAL Data range 1

Scale factor for acceleration or
deceleration

Offset Offset LREAL Data range 0 Acceleration offset

VAR_OUTPUT Name Data type
Effective
range

Initial
value

Description

Done Completed BOOL TRUE/FALSE FALSE TRUE after execution is completed

Busy Executing BOOL TRUE/FALSE FALSE
True when the execution of the function
block has not yet ended

CommandAborted
Command is
aborted

BOOL TRUE/FALSE FALSE
True if the command has been
terminated by another command

Error Error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID Error code SMC_ERROR - 0 Error recognition

(3) Function description

 This function block is a contour motion model for the time period and acceleration/deceleration. The
running mode is Discrete Motion, which runs according to the data set in the user's TimeAcceleration
variable.

 The running status of this function block is in Standstills, and the state of the instruction running is
Discrete Motion. Other states cannot be run.

 The command will start at the rising edge of Execute, and the repeated running speed of this
command in Discrete Motion is the superposition of the previous one, which can easily cause system

126

faults.
 TimeVelocity is MC_TV_REF data type.
The specific description of MC_TP_REF is as follows:

Member Type
Initial
value

Description

Number_of_pairs INT 0 Number of segments in the contour path

IsAbsolute BOOL TRUE
Absolute motion (TRUE) and relative motion

selection
MC_TP_ArrayARRAY[1..N] OF

SMC_TP
Array of time and location

The specific description of SMC_TP is as follows:
Member Type Initial value Description
delta_time TIME TIME#0ms Time of position segment
position LREAL 0 Current position value

Note: The set acceleration is reflected in the change in velocity, and all acceleration changes follow the S-curve.
The acceleration data from the final result change to [starting acceleration is A, ending acceleration is B]
(A+B)/2 is reflected in the final velocity.

3-1-2-15. Read actual position [MC_ReadActualPosition]

(1) Instruction overview

Used to read the current actual position value of the axis.
Instruction Name Graphic representation ST language

MC_ReadActualPosition
read the
actual
position

(2) Related variables

VAR_IN_OUT
Name Data type

Effective range Initial
value

Description

Axis Axis AXIS_REF_SM3 - - Specified axis

VAR_INPUT Name Data type
Effective range Initial

value
Description

Enable Valid BOOL TRUE/FALSE FALSE
Read the current position of the servo
for the true state

VAR_OUTPUT Name Data type
Effective range Initial

value
Description

Valid Obtain flag BOOL TRUE/FALSE FALSE
If the output value is valid, then it is
TRUE

127

Busy Executing BOOL TRUE/FALSE FALSE
True when the execution of the
function block has not yet ended

Error Error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID Error code SMC_ERROR - 0 Error recognition

Position
Obtained axis

position
LREAL Data range 0

Axis position data read from
instructions

(3) Function description

 Read the actual position command in the driver through this command, which is the Enable level enable
effect. Instructions can be used multiple times without affecting each other.

3-1-2-16. Read current torque [MC_ReadActualTorque]

(1) Instruction overview

Used to read the actual torque value of the shaft.
Instruction Name Graphic representation ST language

MC_ReadActualTorque
Read the
current

torque value

(2) Related variables

VAR_IN_OU
T

Name Data type
Effective
range

Initial
value

Description

Axis Axis AXIS_REF_SM3 - - Specified axis

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Enable Valid BOOL TRUE/FALSE FALSE
Must be set to TRUE to activate the
processing of the function block

VAR_OUTP
UT

Name Data type
Effective
range

Initial
value

Description

Valid Obtain flag BOOL TRUE/FALSE FALSE If the output value is valid, then it is TRUE

Busy Executing BOOL TRUE/FALSE FALSE
True when the execution of the function
block has not yet ended

Error Error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID Error code SMC_ERROR - 0 Error recognition

Torque
Current

torque value
obtained

LREAL Data range 0
The current torque data read by the
command

(3) Function description

 Reads the current torque value instruction in the driver through MC_ReadActualTorque, which is the
enable effect of the Enable level. Instructions can be used multiple times without affecting each other.

128

3-1-2-17. Read the current speed [MC_ReadActualVelocity]

(1) Instruction overview

Used to read the actual speed value of the axis.
Instruction Name Graphic representation ST language

MC_ReadActualVelocity
Read the
current
speed

(2) Related variables

VAR_IN_OU
T

Name Data type
Effective
range

Initial
value

Description

Axis Axis AXIS_REF_SM3 - - Specified axis

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Enable Valid BOOL TRUE/FALSE FALSE
Must be set to TRUE to activate the
processing of the function block

VAR_OUTP
UT

Name Data type
Effective
range

Initial
value

Description

Valid Obtain flag BOOL TRUE/FALSE FALSE
If the output value is valid, then it is
TRUE

Busy Executing BOOL TRUE/FALSE FALSE
True when the execution of the
function block has not yet ended

Error Error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID Error code SMC_ERROR - 0 Error recognition

Velocity
Current speed value

obtained
LREAL Data range 0

The current speed data read by the
instruction

(3) Function description

 Reads the current speed value instruction in the driver through MC_ReadActualVelocity, which is the
effect of the Enable level. Instructions can be used multiple times without affecting each other.

129

3-1-2-18. Read axis error status [MC_ReadAxisError]

(1) Instruction overview

Read the axis error.
Instruction Name Graphic representation ST language

SMC_AxisReadSettingsu
alVelocity

Read the axis
error status

(2) Related variables

VAR_IN_OUT Name Data type
Effective range Initial

value
Description

Axis Axis AXIS_REF_SM3 - - Specified axis

VAR_INPUT Name Data type
Effective range Initial

value
Description

Enable Valid BOOL TRUE /FALSE FALSE
Must be set to TRUE to activate
the processing of the function
block

VAR_OUTPUT Name Data type
Effective range Initial

value
Description

Valid Obtain flag BOOL TRUE/FALSE FALSE
If the output value is valid, then
it is TRUE

Busy Executing BOOL TRUE/FALSE FALSE
True when the execution of the
function block has not yet ended

Error Error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID Error code SMC_ERROR - 0 Error recognition

AxisError
Axis error

flag
BOOL TRUE/FALSE FALSE Axis error flag

AxisErrorID
Axis error
code

DWORD
Positive value,

0
0 Read axis error code

SWEndSwitchActive Soft limit BOOL TRUE/FALSE FALSE
If the soft limit is exceeded, it is
TRUE

(3) Function description

 Reads the error code in the driver through MC_ReadAxisError, and the instruction is Enable level effect.
Instructions can be used multiple times without affecting each other.

130

3-1-2-19. Read the axis bit parameter [MC_ReadBoolParameter]

(1) Instruction overview

Read the value of the specified BOOL type variable.
Instruction Name Graphic representation ST language

MC_ReadBoolParameter
Read the axis bit

parameters

(2) Related variables

VAR_IN_OUT Name Data type
Effective
range

Initial
value

Description

Axis Axis AXIS_REF_SM3 - - Specified axis

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Enable Valid BOOL TRUE/FALSE FALSE
Must be set to TRUE to activate the
processing of the function block

ParameterNumber
Axis
parameter
number

DINT
Positive value,
0

0 Parameter number

VAR_OUTPUT Name Data type
Effective
range

Initial
value

Description

Valid Obtain flag BOOL TRUE/FALSE FALSE
If the output value is valid, then it is
TRUE

Busy Executing BOOL TRUE/FALSE FALSE
True when the execution of the function
block has not yet ended

Error Error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID Error code SMC_ERROR - 0 Error recognition

Value
Parameter
value

BOOL TRUE/FALSE FALSE Read the value of the parameter

(3) Function description

 Reads the bit data status in the driver through MC_ ReadBoolParam, and the instruction is Enable level
effect. Instructions can be used multiple times without affecting each other.

131

3-1-2-20. Read the axis parameter [MC_ReadParameter]

(1) Instruction overview

Used to read the specified parameter value.
Instruction Name Graphic representation ST language

MC_ReadParameter
Read the axis
parameter

(2) Related variables

VAR_IN_OUT Name Data type
Effective
range

Initial
value

Description

Axis Axis AXIS_REF_SM3 - - Specified axis

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Enable Valid BOOL TRUE/FALSE FALSE
Must be set to TRUE to activate the
processing of the function block

ParameterNumber
Axis
parameter
number

DINT
Positive value,
0

0 Parameter number

VAR_OUTPUT Name Data type
Effective
range

Initial
value

Description

Valid Obtain flagBOOL TRUE/FALSE FALSE
If the output value is valid, then it is
TRUE

Busy Executing BOOL TRUE/FALSE FALSE
True when the execution of the function
block has not yet ended

Error Error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID Error code SMC_ERROR - 0 Error recognition

Value
Parameter
value

LREAL Data range 0 Read the value of the parameter

(3) Function description

 Reads the bit data status in the driver through MC_ReadParam, and the instruction is Enable level effect.
Instructions can be used multiple times without affecting each other.

132

3-1-2-21. Read axis instruction position [SMC_ReadSetPosition]

(1) Instruction overview

This function block can be used to read the current set position of the drive.
Instruction Name Graphic representation ST language

SMC_ReadSetPosition
Read axis
command
position

(2) Related variables

VAR_IN_OUT Name Data type
Effective
range

Initial
value

Description

Axis Axis AXIS_REF_SM3 - - Specified axis

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Enable Valid BOOL TRUE/FALSE FALSE
Must be set to TRUE to activate the
processing of the function block

VAR_OUTPU
T

Name Data type
Effective
range

Initial
value

Description

Valid Obtain flag BOOL TRUE/FALSE FALSE If the output value is valid, then it is TRUE

Busy Executing BOOL TRUE/FALSE FALSE
True when the execution of the function
block has not yet ended

Error Error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID Error code SMC_ERROR - 0 Error recognition
Position Position LREAL Data range 0 Set position value

(3) Function description

 Enable is true, valid if there are no errors, and Busy output is TURE.
 The output value of Position is the value of Axis.fSetPosition.
 If Enable is changed to FALSE, then Valid and Busy outputs as FALSE. Position remains at the value

before FALSE.

133

3-1-2-22. Read function block error [SMC_ReadFBError]

(1) Instruction overview

Read error messages of the axis function block.
Instruction Name Graphic representation ST language

SMC_ReadFBError
Read function
block error

(2) Related variables

VAR_IN_OUT
Name Data type

Effective
range

Initial
value

Description

Axis Axis AXIS_REF_SM3 - - Specified axis

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

bEnable Valid BOOL TRUE/FALSE FALSE
Must be set to TRUE to activate the
processing of the function block

VAR_OUTPUT Name Data type
Effective
range

Initial
value

Description

bValid Obtain flag BOOL TRUE/FALSE FALSE
If the output value is valid, then it is
TRUE

bBusy Executing BOOL TRUE/FALSE FALSE
True when the execution of the
function block has not yet ended

bFBError Error BOOL TRUE/FALSE FALSE Function block execution error
nFBErrorID Error code SMC_ERROR - 0 Error recognition

pbyErrorInstance
Error
pointer

POINTER TO BYTE - -
Pointer pointing to error reporting
function block

strErrorInstance
Error
pointer

STRING - - -

tTimeStamp Time stampTIME - 0
The timestamp at which the error
occurred

(3) Function description

 Enable is true, valid if there are no errors, and Busy output is TURE.
 If there is a function block alarm, the output of bFBError is true.
 If Enable is changed to FALSE, then Valid and Busy outputs as FALSE.

134

3-1-2-23. Set axis bit parameter [MC_WriteBoolParameter]

(1) Instruction overview

Write parameter values of type BOOL.
Instruction Name Graphic representation ST language

MC_WriteBoolParameter
Set the axis bit
parameter

(2) Related variables

VAR_IN_OUT
Name Data type

Effective
range

Initial
value

Description

Axis Axis AXIS_REF_SM3 - - Specified axis

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Execute Valid BOOL TRUE/FALSE FALSE
The rising edge of the input value will
initiate the execution of the function block

ParameterNumber
Parameter
number

DINT
Positive
number, 0

0 Parameter ID

Value
Parameter
value

BOOL TRUE/FALSE FALSE -

VAR_OUTPUT Name Data type
Effective
range

Initial
value

Description

Done Completed BOOL TRUE/FALSE FALSE
True if the parameter value has been
successfully written

Busy Executing BOOL TRUE/FALSE FALSE
True when the execution of the function
block has not yet ended

Error Error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID Error code SMC_ERROR - 0 Error recognition

(3) Function description

 Sets the bit parameter of the axis through MC_ WriteBoolParameter, and the instruction is triggered at the
rising edge of Execute. Instructions can be used multiple times without affecting each other.

135

3-1-2-24. Set the axis parameter [MC_WriteParameter]

(1) Instruction overview

Write the specified parameter value.
Instruction Name Graphic representation ST language

MC_WriteParameter
Set the axis
parameter

(2) Related variables

VAR_IN_OUT
Name Data type

Effective range Initial
value

Description

Axis Axis AXIS_REF_SM3 - - Specified axis

VAR_INPUT Name Data type
Effective range Initial

value
Description

Execute Valid BOOL TRUE/FALSE FALSE
The rising edge of the input value will
initiate the execution of the function block

ParameterNumber
Parameter
number

DINT Positive value, 0 0 Parameter ID

Value
Parameter
value

LREAL Data range - Write the value that needs to be set

VAR_OUTPUT Name Data type
Effective range Initial

value
Description

Done Completed BOOL TRUE/FALSE FALSE
True if the parameter value has been
successfully written

Busy Executing BOOL TRUE/FALSE FALSE
True when the execution of the function
block has not yet ended

Error Error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID Error code SMC_ERROR - 0 Error recognition

(3) Function description

 Set the axis parameter through MC_WriteParameter, the instruction is triggered at the rising edge of
Execute. Instructions can be used multiple times without affecting each other.

136

3-1-2-25. Clear the error [SMC_ClearFBError]

(1) Instruction overview

Clear the historical error information of the function block.
Instruction Name Graphic representation ST language

SMC_ClearFBError Clear error

(2) Related variables

VAR_INPUT
Name Data type

Effective range Initial
value

Description

pDrive
Axis
pointer

POINTR TO
AXIS_REF_SM3

- - Mapping to the axis

VAR_OUTPUT Name Data type
Effective range Initial

value
Description

SMC_ClearFBError Valid BOOL TRUE/FALSE FALSE Clear error is true

(3) Function description

 When an error occurs on the axis, after calling the reset function block to reset the axis, it is necessary to
call the function block to clear the historical error status of the axis. The rising edge of Execute will trigger
the execution of this instruction.

3-1-2-26. Read the error [SMC_ErrorString]

(1) Instruction overview

Read the error description information corresponding to the error code.
Instruction Name Graphic representation ST language

SM3_Error.SMC_ErrorString
Read the
error

(2) Related variables

VAR_INPUT
Name Data type

Effective
range

Initial value Description

ErrorID Error code SMC_ERROR - - Error recognition
Language Language - - - Required language

VAR_OUTPUT Name Data type
Effective
range

Initial value Description

SMC_ErrorString Error STRING(100) - - Error description information

137

3-1-2-27. Recall driver/axis [SMC3_ReinitDrive]

(1) Instruction overview

This function block calls the driver/axis again. This means that the startup phase runs again and the application
cannot control the driver until the function block is set to bDone:=TRUE.

Instruction Name Graphic representation ST language

SMC3_ReinitDrive
Recall
driver/axis

(2) Related variables

VAR_IN_OUT Name Data type Effective range Initial value Description
Axis Axis AXIS_REF_SM3 - - Specified axis

VAR_INPUT Name Data type Effective range Initial value Description

bExecute Valid BOOL TRUE/FALSE FALSE

The rising edge of the input
value will initiate the
execution of the function
block

bVirtual Language BOOL TRUE/FALSE FALSE
Input determines whether an
axis actually exists or is
simulated

VAR_OUTP
UT

Name Data type
Effective range Initial value Description

bDone Completed BOOL TRUE/FALSE FALSE
TRUE after execution is
completed

bBusy Executing BOOL TRUE/FALSE FALSE
True when the execution of the
function block has not yet
ended

bError Error BOOL TRUE/FALSE FALSE Function block execution error
nErrorID Error code SMC_ERROR - 0 Error recognition

(3) Function description

 Used to reset the drive and reconnect with the controller.
 Input bvirtual to determine whether an axis truly exists or is simulated. If the input bVirtual is set to

TRUE, the axis is set to virtual mode. Then, it will be replaced by simulations similar to virtual drive
devices. This has no impact on the fieldbus device, it will continue to operate as usual, but will not
receive messages from or send messages to the actual device.

138

3-1-2-28. Set the axis COE parameter [SMC3_ETC_WriteParameter_CoE]

(1) Instruction overview

Instruction Name Graphic representation ST language

SMC3_ETC_WriteParameter_
CoE

Set the axis
COE
parameter

(2) Related variables

VAR_IN_OUT
Name Data type

Effective range Initial
value

Description

Axis Axis AXIS_REF_SM3 - -
Specified axis

VAR_INPUT
Name Data type

Effective
range

Initial
value

Description

xExecute Valid BOOL TRUE/FALSE FALSE

The rising edge of the input
value will initiate the
execution of the function
block

XAbort Abort BOOL TRUE/FALSE FALSE
Terminate an ongoing write
request

uiIndex Object index UINT - - Object index, eg. 16#6060

usiSubInde
Object
subindex

USINT - - Object subindex, eg. 0

usiDataLength
Write in data
length

USINT - -
The length of data written in
bytes (1-4)

dwValue Write value DWORD - - Write in value DWORD
VAR_OUTPU
T

Name Data type
Effective
range

Initial
value

Description

bDone Completed BOOL TRUE/FALSE FALSE
TRUE after execution is
completed

bBusy Executing BOOL TRUE/FALSE FALSE
True when the execution of the
function block has not yet
ended

bError Error BOOL TRUE/FALSE FALSE Function block execution error
nErrorID Error code SMC_ERROR - 0 Error recognition

(3) Application

Modify the value of 607D:

VAR
SMC3_ETC_WriteParameter_CoE_0: SMC3_ETC_WriteParameter_CoE;

139

SMC3_ETC_WriteParameter_CoE_1: SMC3_ETC_WriteParameter_CoE;
WRITE: BOOL;
SMC3_ReinitDrive: SMC3_ReinitDrive;

END_VAR

SMC3_ETC_WriteParameter_CoE_0(
xExecute: = WRITE, //trigger at the rising edge
xAbort: = ,
uiIndex: =16#607D , //object index such as 16#6060
usiSubIndex: =1 , //object subindex such as 0
usiDataLength: =4 , // the length of data written in bytes (1-4)
dwValue: = 16#8000, //write in value DWORD, can customize DWORD variables
Axis: =SM_Drive_GenericDSP402 , // SoftMotion axis
xDone=> ,
xBusy=> ,
xError=> ,
dwErrorCode=> ,
eError=>);

SMC3_ETC_WriteParameter_CoE_1(
xExecute: = WRITE,
xAbort: = ,
uiIndex: =16#607D ,
usiSubIndex: =2 ,
usiDataLength: =4 ,
dwValue: = 16#8000,
Axis: =SM_Drive_GenericDSP402 ,
xDone=> ,
xBusy=> ,
xError=> ,
dwErrorCode=> ,
eError=>);

140

3-1-2-29. Probe [MC_TouchProbe]

(1) Instruction overview

This function block is used to record the position of the axis when a triggering event occurs.
Instruction Name Graphic representation ST language

MC_TouchProbe Enable
probe

(2) Related variables

VAR_IN_OUT Name Data type Effective range Initial
value

Description

Axis Axis AXIS_REF_SM3 - - Specified axis

TruggerInput Trigger
signal TRIIGGER_ REF - - Reference trigger signal source

VAR_INPUT Name Data type Effective range Initial
value

Description

Execute Valid BOOL TRUE/FALSE FALSE
The rising edge of the input value will
initiate the execution of the function
block

WindowOnly Trigger
window BOOL TRUE/FALSE FALSE

FirstPosition Parameter
value LREAL - 0 The starting position for receiving

triggering events

LastPosition Parameter
value LREAL - 0 The final location to receive the

triggering event

VAR_OUTPUT Name Data type Effective range Initial
value

Description

Done Completed BOOL TRUE/FALSE FALSE True if the parameter value has been
successfully written

Busy Executing BOOL TRUE/FALSE FALSE True when the execution of the
function block has not yet ended

Error Error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID Error code SMC_ERROR - 0 Error recognition

RecordedPosition
Trigger
record
location

LREAL - 0 Current position when triggered

CommandAborted Instruction
interrupted BOOL TRUE/FALSE FALSE The current instruction has been

interrupted and set to TRUE

(3) Function description

 Record the current position of the running axis when the TruggerInput signal is triggered through the
function block MC_TouchProbe.

 When the driver is locked: the driver will collect the locking signal at the recording position and wait until
the controller.

141

(4) Application

Example 1: Taking Xinje DS5C servo as an example, to achieve locking position function of probe 1 at the
rising edge.

Programming:
(1) Check 'Enable Expert Settings', select 1601 and 1A01 in PDO Allocation in Expert Process Data, add 60B8h
in 1601, and 60BAh and 60B9h in 1a01.

(2) You can see the newly added parameters in "EthercatI/O Mapping".

142

(3) Set bFastLatching to true, bInput to false, and iTriggerNumber to 0 in the input pin TriggerInput of the
function block "MC_TouchProbe". After the function block is turned on, it will open the rising edge of
probe 1. After conduction, it can be seen that the value in 60B8h is 17, which is the rising edge of probe 1.

(4) Can be found in 'Trace' that after MC_TouchProbe command done, it will immediately latch the current
position.

143

144

3-1-3. Single axis function application

Example 1: To achieve axis 0 movement in two segments to reach the designated position of 0 Pluse, the first
segment operates at a speed of 10 Pluse/S and an acceleration of 100 Pluse/S2 for relative motion. Then, relative
to the starting position, a further 100 Pluse is run. After reaching the relative position of the target, an absolute
motion is run at a speed of 15 Pluse/S and an acceleration of 100 Pluse/S2 for absolute motion. The motion
reaches the target position of 0 Pluse. During the movement process, the real-time position can be read, and the
movement can also be stopped. If an error occurs, the axis can also be reset.

145

3-2. Axis group function

3-2-1. Axis group instruction
Instruction Function

MC_AddAxisToGroup add the axis to the axis group
MC_RemoveAxisFromGroup remove the axis from the axis group
MC_UngroupAllAxes delete all the axes in the axis group
MC_GroupEnable enable the axis group
MC_GroupDisable disable the axis group
MC_GroupReset reset the axis group
MC_GroupSetPosition set the axis group position
MC_SetCoordinateTransform coordinate transformation
MC_SetDynCoordTransform connect two axis groups
MC_GroupContinue axis group continue
MC_GroupHalt axis group halt
MC_GroupInterrupt axis group interrupt
MC_GroupStop axis group stop
MC_GroupSetOverride change speed, acceleration, or active and controlled actions
MC_SetKinTransform kinematic coordinate system conversion
MC_MoveCircularAbsolute circular move to absolute position
MC_MoveCircularRelative circular move to relative position
MC_MoveDirectAbsolute move to absolute position
MC_MoveDirectRelative move to relative position
MC_MoveLinearAbsolute linear move to absolute position
MC_MoveLinearRelative linear move to relative position
MC_GroupReadActualPosition read actual position
MC_GroupReadActualVelocity read actual speed
MC_GroupReadConfiguration read parameters
MC_GroupReadError read error
MC_GroupReadStatus read status
SMC_StartupAxisGroup startup the axis group
SMC_GroupPower power on the axis group
SMC_GroupInterruptAt break assignment
SMC_GroupEnableResumeAfterError Resume motion after axis error
SMC_GroupJog axis group jog run
SMC_GroupWait axis group wait

146

3-2-2. Axis group instructions

3-2-2-1. Add axis to axis group [MC_AddAxisToGroup]

(1) Instruction overview

Add an axis to the axis group using command mode.
Instruction Name Graphical representation ST language

MC_AddAxisToGroup
Add axis to axis

group

(2) Related variables

VAR_IN_OU
T

Name Data type
Effective
range

Initial
value

Description

AxisGroup axis group AXIS_GROUP_REF_SM3 - - specified axis group
Axis axis AXIS_REF_SM3 - - specified axis

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Execute valid BOOL TRUE/FALSE FALSE
The rising edge of the input value will
initiate the execution of the function
block

VAR_OUTP
UT

Name Data type
Effective
range

Initial
value

Description

Done completed BOOL TRUE/FALSE FALSE
TRUE when instruction execution is
completed

Busy executing BOOL TRUE/FALSE FALSE
True when the execution of the
function block has not yet ended

Error error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID error code SMC_ERROR - 0 Error recognition

(3) Function description

 The instruction is used to add axis to the specified axis group and bind them together in the relationship of
the axis group.

 When the Done variable of the instruction becomes TRUE, it indicates that the axis has been successfully
added to the axis group. Note that setting Execute to FALSE does not remove the axis from the axis group.
If you need to remove the axis from the axis group, you need to use MC_ RemoveAxisFromGroup
instruction.

 This command can only be executed when the axis group is in the GroupDisabled state. If this command is
executed after the axis group is enabled, an error will be reported.

147

3-2-2-2. Remove axis from the axis group [MC_RemoveAxisFromGroup]

(1) Instruction overview

Remove the axis from the axis group.
Instruction Name Graphical representation ST language

MC_RemoveAxisFromGroup
remove axis from
the axis group

(2) Related variables

VAR_IN_OU
T

Name Data type
Effective
range

Initial
value

Description

AxisGroup axis group
AXIS_GROUP_REF_

SM3
- - specified axis group

Axis axis AXIS_REF_SM3 - - specified axis

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Execute valid BOOL TRUE/FALSE FALSE
The rising edge of the input value will
initiate the execution of the function block

VAR_OUTP
UT

Name Data type
Effective
range

Initial
value

Description

Done completed BOOL TRUE/FALSE FALSE
TRUE when instruction execution is
completed

Busy executing BOOL TRUE/FALSE FALSE
True when the execution of the function
block has not yet ended

Error error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID error code SMC_ERROR - 0 Error recognition

(3) Function description

 This command can only be executed when the axis group is not enabled. If this command is executed after
the axis group is enabled, an error will be reported.

 When the Done variable of the instruction becomes TRUE, it indicates that the axis has been successfully
removed from the axis group.

148

3-2-2-3. Ungroup all the axes [MC_UngroupAllAxes]

(1) Instruction overview

Remove all the axes contained in a certain axis group and dissolve the axis group.
Instruction Name Graphical representation ST language

MC_UngroupAllAxes
ungroup
the axis
group

(2) Related variables

VAR_IN_OUT
Name Data type Effective range

Initial
value

Description

AxisGroup axis group AXIS_GROUP_REF_SM3 - - specified axis group

VAR_INPUT Name Data type Effective range
Initial
value

Description

Execute Valid BOOL TRUE/FALSE FALSE
The rising edge of the input value
will initiate the execution of the
function block

VAR_OUTPUT Name Data type Effective range
Initial
value

Description

Done completed BOOL TRUE/FALSE FALSE
TRUE when instruction execution
is completed

Busy executing BOOL TRUE/FALSE FALSE
True when the execution of the
function block has not yet ended

Error error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID error code SMC_ERROR - 0 Error recognition

(3) Function description

 Remove all axes from the axis group. If the status of the axis group is not GroupDisabled, an error will be
generated and the axis will not be removed from the axis group.

149

3-2-2-4. Enable the axis group [MC_GroupEnable]

(1) Instruction overview

Enable the axis group.
Instruction Name Graphical representation ST language

MC_GroupEnable
Enable the
axis group

(2) Related variables

VAR_IN_OUT
Name Data type

Effective
range

Initial
value

Description

AxisGroup axis group AXIS_GROUP_REF_SM3 - - specified axis group

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Execute valid BOOL TRUE/FALSE FALSE

The rising edge of the input
value will initiate the
execution of the function
block

CompatibilityOptions
compatibili
ty option

SMC_AXIS_GROUP_CO
MPATIBILITY_OPTIONS

- -
Parameters that exist for
compatibility with previous
versions

VAR_OUTPUT Name Data type
Effective
range

Initial
value

Description

Done completed BOOL TRUE/FALSE FALSE
TRUE when instruction
execution is completed

Busy executing BOOL TRUE/FALSE FALSE
True when the execution of
the function block has not
yet ended

Error error BOOL TRUE/FALSE FALSE
Function block execution
error

ErrorID error code SMC_ERROR - 0 Error recognition

(3) Function description

 Before calling the motion control and other commands of the axis group, SMC_GroupPower or
MC_Power needs to be called to enable the axis group.

 When the Done variable of the instruction becomes TRUE, it indicates that the axis group has successfully
switched to the Standby state.

 The types of axes that can be specified in the axis group can only be "servo axis" and "virtual servo axis".
If other axis types are specified, an exception will occur.

 When executing this command, all axes under the axis group must be in a stop state.

150

 If there are axes that already belong to other axis groups and have already been enabled, MC_GroupEnable
cannot be executed, the command will cause an unexpected error.

 The conditions for invalidating the axis group include: executing MC_GroupDisable command, switch to
program mode to stop running, and start MC trial run.

3-2-2-5. Disable the axis group [MC_GroupDisable]

(1) Instruction overview

The axis group is switched to the Disabled state, and motion control of the axis group cannot be performed in
this state.

Instruction Name Graphical representation ST language

MC_GroupEnable
Disable the
axis group

(2) Related variables

VAR_IN_OUT Name Data type Effective range
Initial
value

Description

AxisGroup axis group AXIS_GROUP_REF_SM3 - - specified axis group

VAR_INPUT Name Data type Effective range
Initial
value

Description

Execute valid BOOL TRUE/FALSE FALSE
The rising edge of the input value
will initiate the execution of the
function block

VAR_OUTPUT Name Data type Effective range
Initial
value

Description

Done completed BOOL TRUE/FALSE FALSE
TRUE when instruction execution is
completed

Busy executing BOOL TRUE/FALSE FALSE
True when the execution of the
function block has not yet ended

Error error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID error code SMC_ERROR - 0 Error recognition

(3) Function description

 This command switches the specified axis group to the GroupDisable state.
 When the axis group status changes to GroupDisable, the cache instructions for the specified AxesGroup

will be cleared.

151

3-2-2-6. Axis group reset [MC_GroupReset]

(1) Instruction overview

Release the abnormal state of the axis group and axis.
Instruction Name Graphical representation ST language

MC_GroupReset
axis group

reset

(2) Related variables

VAR_IN_OUT Name Data type Effective range
Initial
value

Description

AxisGroup axis group AXIS_GROUP_REF_SM3 - - specified axis group

VAR_INPUT Name Data type Effective range
Initial
value

Description

Execute valid BOOL TRUE/FALSE FALSE
The rising edge of the input value
will initiate the execution of the
function block

VAR_OUTPUT Name Data type Effective range
Initial
value

Description

Done completed BOOL TRUE/FALSE FALSE
TRUE when instruction
execution is completed

Busy executing BOOL TRUE/FALSE FALSE
True when the execution of the
function block has not yet ended

Error error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID error code SMC_ERROR - 0 Error recognition

(3) Function description

 On the rising edge of Execute, handle the exceptions of the AxesGroup specified axis group in the
GroupEnable state and the exceptions of the axis to which the axis group belongs. The exceptions that can
be resolved include "minor faults" in the axis and axis group, "abnormal monitoring information", and
driver error reset.

 Regardless of whether the axis is in servo ON or servo OFF state, abnormal release processing can be
executed.

 For axes with driver errors, the driver error reset process should be executed first, and then the exception
relief process should be executed.

 The driver error reset processing can choose to clear the driver error or remain unchanged within the axis
parameter [driver error reset monitoring time]. Driver error reset is performed simultaneously on all axes
belonging to the axis group.

 The exception object that can be resolved is the exception that occurs when the rising edge of Execute is
activated. Cannot perform exception resolution on exceptions that occur during the exception resolution
process.

152

 If the command is executed during an incorrect deceleration stop of the axis group, it cannot be executed
because abnormal release cannot be performed before the axis stops. In addition, if an abnormal error
occurs on the axis itself in the axis group, it cannot be resolved through this command.

3-2-2-7. Set axis group position [MC_GroupSetPosition]

(1) Instruction overview

Used to set the command positions of each axis in the axis group.
Instruction Name Graphical representation ST language

MC_GroupSetPosition
set axis group

position

(2) Related variables

VAR_IN_OU
T

Name Data type
Effective
range

Initial
value

Description

AxisGroup axis group AXIS_GROUP_REF_SM3 - - specified axis group

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Execute valid BOOL TRUE/FALSEFALSE
The rising edge of the input value will
initiate the execution of the function
block

Position position SMC_POS_REF data range 0 axis target position

Relative
position
mode

BOOL TRUE/FALSEFALSE
Relative position mode=True, absolute
position mode=False (default)

CoordSystem
Applied
coordinate
system

SMC_COORD_SYSTEM - - Applied coordinate system

VAR_OUTP
UT

Name Data type
Effective
range

Initial
value

Description

Done completed BOOL TRUE/FALSEFALSE
TRUE when instruction execution is
completed

Busy executing BOOL TRUE/FALSEFALSE
True when the execution of the
function block has not yet ended

Error error BOOL TRUE/FALSEFALSEFunction block execution error
ErrorID error code SMC_ERROR - 0 Error recognition

(3) Function description

 Set the coordinate position under the specified coordinate system in the axis group.

153

 The instruction is executed in the GroupStandby state of the axis group, and cannot be executed in the
dynamic coordinate system or executed with MC_GroupContinue instruction simultaneously.

3-2-2-8. Coordinate transform [MC_SetCoordinateTransform]

(1) Instruction overview

Used to convert different command coordinates of reference coordinate systems.
Instruction Name Graphical representation ST language

MC_SetCoordinateTransform
Coordinate
transform

(2) Related variables

VAR_IN_OUT
Name Data type

Effective
range

Initial
value

Description

AxisGroup axis group AXIS_GROUP_REF_SM3 - - specified axis group

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Execute valid BOOL TRUE/FALSE FALSE
The rising edge of the input
value will initiate the execution
of the function block

CoordTransform
coordinate
transform

MC_COORD_REF - -

Coordinate transformation, i.e.
the product coordinate system
(PCS1 or PCS2) or machine
coordinate system (MCS)
represented by the World
Coordinate System (WCS)

CoordSystem
Applied
coordinate
system

SMC_COORD_SYSTEM - -
Target coordinate system,
allowing for conversion of
PCS_1, PCS_2 and MCS

VAR_OUTPUT Name Data type
Effective
range

Initial
value

Description

Done completed BOOL TRUE/FALSE FALSE
TRUE when instruction
execution is completed

Busy executing BOOL TRUE/FALSE FALSE
True when the execution of the
function block has not yet ended

Error error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID error code SMC_ERROR - 0 Error recognition

(3) Function description

154

 Set the world coordinate system (WCS) and product/machine coordinate system (PCS */MCS) in the axis
group for coordinate system conversion.

 When PCS is a dynamic coordinate system (PCS moves relative to WCS), MC_SetDynCoordTransform
needs to be used.

 This command only performs coordinate system conversion and is independent of motion control
commands.

3-2-2-9. Dynamic coordinate system conversion [MC_SetDynCoordTransform]

(1) Instruction overview

When the specified coordinate system moves relative to WCS, this command needs to be called to achieve
coordinate system conversion.

Instruction Name Graphical representation ST language

MC_SetDynCoordTransform
Dynamic

coordinate system
conversion

(2) Related variables

VAR_IN_OUT
Name Data type

Effective
range

Initial
value

Description

AxisGroup axis group AXIS_GROUP_REF_SM3 - - specified axis group

MasterAxisGroup
master axis
group

AXIS_GROUP_REF_SM3 - - specified master axis group

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Execute valid BOOL TRUE/FALSE FALSE
The rising edge of the input value
will initiate the execution of the
function block

CoordTransform

Coordinate
system to

be
converted

MC_COORD_REF - -
The tool coordinate system of the
spindle group is relative to the
coordinates and direction of PCS

CoordSystem
Coordinate
System

SMC_COORD_SYSTEM - -
The PCS coordinate system to be
converted (PCS1 or PCS2)

VAR_OUTPUT Name Data type
Effective
range

Initial
value

Description

Done completed BOOL TRUE/FALSE FALSE
TRUE when instruction execution
is completed

Busy executing BOOL TRUE/FALSE FALSE True when the execution of the

155

function block has not yet ended

InUse
Reference
system

BOOL - -
Indicates the dynamic coordinate
system that the axis group still
needs to reference

Error error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID error code SMC_ERROR - 0 Error recognition

(3) Function description

 Usually used when using dynamic PCS, such as MC_TrackConveyorBelt or MC_TrackRotaryTable is
called together.

 Instruction SMC_SetDynCoordTransformEX provides a more universal interface.

3-2-2-10. Axis group continue running [MC_GroupContinue]

(1) Instruction overview

Release the interrupt status of the axis group and continue executing unfinished commands.
Instruction Name Graphical representation ST language

MC_GroupContinue
axis group
continue
running

(2) Related variables

VAR_IN_OUT Name Data type
Effective
range

Initial
value

Description

AxisGroup axis group AXIS_GROUP_REF_SM3 - - specified axis group

continueData
Continuing
motion data

SMC_AXIS_GROUP_
CONTINUE_DATA

- -
Axis group position during
motion interruption

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Execute valid BOOL TRUE/FALSE FALSE Execute current instruction

VAR_OUTPUT Name Data type
Effective
range

Initial
value

Description

Done completed BOOL TRUE/FALSE FALSE
TRUE when instruction
execution is completed

CommandAborted
Instruction
interrupted

BOOL TRUE/FALSE FALSE
Module execution
interrupted is true

Busy executing BOOL TRUE/FALSE FALSE
True when the execution of
the function block has not
yet ended

Error error BOOL TRUE/FALSE FALSE Function block execution

156

error
ErrorID error code SMC_ERROR - 0 Error recognition

(3) Function description

 Release the interrupt status of the axis group and continue executing unfinished commands.

3-2-2-11. Axis group halt [MC_GroupHalt]

(1) Instruction overview

Used to pause the current axis group motion.
Instruction Name Graphical representation ST language

MC_GroupHalt
axis group

halt

(2) Related variables

VAR_IN_OUT
Name Data type

Effective
range

Initial
value

Description

AxisGroup axis group
AXIS_GROUP_REF_

SM3
- - specified axis group

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Execute valid BOOL TRUE/FALSE FALSE Execute current instruction

Deceleration deceleration LREAL
positive
number

0
Maximum resultant deceleration
[command unit/s2]

Jerk jerk speed LREAL
positive
number

0
Maximum resultant jerk
speed[command unit/s3]

AccFactor
acceleration

factor
LREAL 0-1 1

Acceleration factor, the maximum
velocity of each axis multiplied
by this acceleration factor, with a
value between [0,1]

JerkFactor jerk factor LREAL 0-1 1

Jerk speed factor, multiply the
maximum velocity of each axis
by this jerk factor, and the value is
between [0,1]

VAR_OUTPUT Name Data type Effective Initial Description

157

range value

Done completed BOOL TRUE/FALSE FALSE
TRUE when instruction execution
is completed

Busy executing BOOL TRUE/FALSE FALSE
True when the execution of the
function block has not yet ended

Active in control BOOL TRUE/FALSE FALSE Change to TRUE in control

CommandAborted
Instruction
interrupted

BOOL TRUE/FALSE FALSE
Module execution interrupted is
true

CommandAccepted
motion
accepted

BOOL TRUE/FALSE FALSE
True when the module
successfully calls the axis group

Error error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID error code SMC_ERROR - 0 Error recognition

MovementId motion flag SMC_Movement_Id TRUE/FALSE FALSE
True when the motion is being
executed or completed

3-2-2-12. Axis group interruption [MC_GroupInterrupt]

(1) Instruction overview

Interrupt the currently moving axis group, which can be done through MC_GroupContinue instruction
continues to execute unfinished motion instructions.

Instruction Name Graphical representation ST language

MC_GroupInterrupt
axis group
interruption

(2) Related variables

VAR_IN_OUT
Name Data type

Effective
range

Initial
value

Description

AxisGroup axis group
AXIS_GROUP_REF_

SM3
- - specified axis group

continueData
Continuing
motion data

SMC_AXIS_GROUP_
CONTINUE_DATA

- -
Motion information when axis
group motion is interrupted

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Execute valid BOOL TRUE/FALSE FALSE Execute current instruction

VAR_OUTPUT Name Data type
Effective
range

Initial
value

Description

Done completed BOOL TRUE/FALSE FALSE
TRUE when instruction
execution is completed

CommandAborted Instruction BOOL TRUE/FALSE FALSEModule execution interrupted

158

interrupted is true

Busy executing BOOL TRUE/FALSE FALSE
True when the execution of the
function block has not yet
ended

Error error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID error code SMC_ERROR - 0 Error recognition

mvtIdInterruptPosi
tion

interrupt position
ID

SMC_Movement_Id - -
The Movement ID
corresponding to the interrupt
location

3-2-2-13. Axis group stop [MC_GroupStop]

(1) Instruction overview

Stop the movement of the axis group.
Instruction Name Graphical representation ST language

MC_GroupStop
axis group

stop

(2) Related variables

VAR_IN_OUT Name Data type
Effective
range

Initial
value

Description

AxisGroup axis group
AXIS_GROUP_REF_

SM3
- - specified axis group

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Execute valid BOOL TRUE/FALSE FALSE Execute current instruction

Deceleration deceleration LREAL
positive
number

0
Maximum resultant deceleration
[command unit/s2]

Jerk jerk speed LREAL
positive
number

0
Maximum resultant jerk speed
[command unit/s3]

AccFactor
acceleration

factor
LREAL 0-1 1

Acceleration factor, the maximum
velocity of each axis multiplied
by this acceleration factor, with a
value between [0,1]

159

JerkFactor jerk factor LREAL 0-1 1

Jerk speed factor, multiply the
maximum velocity of each axis
by this jerk factor, and the value is
between [0,1]

VAR_OUTPUT Name Data type
Effective
range

Initial
value

Description

Done completed BOOL TRUE/FALSE FALSE
TRUE when instruction execution
is completed

Busy executing BOOL TRUE/FALSE FALSE
True when the execution of the
function block has not yet ended

Active in control BOOL TRUE/FALSE FALSE Change to TRUE in control

CommandAborted
Instruction
interrupted

BOOL TRUE/FALSE FALSE
Module execution interrupted is
true

CommandAccepted
motion
accepted

BOOL TRUE/FALSE FALSE
True when the module
successfully calls the axis group

Error error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID error code SMC_ERROR - 0 Error recognition

MovementId motion flag SMC_Movement_Id TRUE/FALSE FALSE
True when the motion is being
executed or completed

3-2-2-14. Kinematic coordinate transformation [MC_SetKinTransform]

(1) Instruction overview

Set the kinematic transformation of the axis group from the ACS coordinate system to the MCS coordinate
system.

Instruction Name Graphical representation ST language

MC_SetKinTransform
Kinematic
coordinate

transformation

(2) Related variables

VAR_IN_OUT
Name Data type

Effective
range

Initial
value

Description

AxisGroup axis group AXIS_GROUP_REF_SM3 - - specified axis group

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Execute valid BOOL TRUE/FALSE FALSE
The rising edge of the input
value will initiate the execution
of the function block

KinTransform Kinematic TRAFO.MC_KIN_REF_ - - Kinematic transformation

160

transformation
values

SM3

VAR_OUTPU
T

Name Data type
Effective
range

Initial
value

Description

Done completed BOOL TRUE/FALSE FALSE
TRUE when instruction
execution is completed

Busy executing BOOL TRUE/FALSE FALSE
True when the execution of the
function block has not yet ended

Error error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID error code SMC_ERROR - 0 Error recognition

(3) Function description

 Set up kinematic transformations between the Axis Coordinate System (ACS) and the Machine Coordinate
System (MCS).

 After executing this function block, the tool offset will be reset.

3-2-2-15. Set axis group overshoot value [MC_GroupSetOverride]

(1) Instruction overview

When the axis group is in the Moving state, change the motion speed of the axis group.
Instruction Name Graphical representation ST language

MC_GroupSetOverride
set the axis group
overshoot value

(2) Related variables

VAR_IN_OUT
Name Data type

Effective
range

Initial
value

Description

AxisGroup axis group
AXIS_GROUP_

REF_SM3
- - specified axis group

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Execute valid BOOL TRUE/FALSE FALSE Execute current instruction

VelFactor speed factor LREAL 0-1 1
Speed factor, the maximum speed of
each axis multiplied by this speed factor,
with a value between [0, 1]

161

AccFactor
acceleration

factor
LREAL 0-1 1

Acceleration factor, the maximum
velocity of each axis multiplied by this
acceleration factor, with a value between
[0,1]

JerkFactor jerk speed factor LREAL 0-1 1

jerk velocity factor, multiply the
maximum velocity of each axis by this
jerk factor, and the value is between
[0,1]

PathVelFactor
Resultant velocity

factor
LREAL 0-1 1

Resultant velocity factor, the maximum
resultant velocity of the entire axis
group's motion trajectory multiplied by
this velocity factor, with a value between
[0,1]

PathAccFactor
resultant

acceleration
factor

LREAL 0-1 1

Resultant acceleration factor, the
maximum resultant acceleration of the
entire axis group motion trajectory
multiplied by this resultant acceleration
factor, with a value between [0,1]

PathJerkFactor
resultant jerk
speed factor

LREAL 0-1 1

The resultant jerk factor is the maximum
resultant jerk speed of the entire axis
group's motion trajectory multiplied by
this resultant jerk factor, with a value
between [0,1]

VAR_OUTPU
T

Name Data type
Effective
range

Initial
value

Description

Enabled completed BOOL TRUE/FALSE FALSE
When the overshoot factor setting
completed is TRUE

Busy executing BOOL TRUE/FALSE FALSE
True when the execution of the function
block has not yet ended

Error error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID error code SMC_ERROR - 0 Error recognition

(3) Function description

 The axis group can change the speed, acceleration, and acceleration of movement by executing this
command in the Moving state.

 The given overshoot factor remains valid until a new value is set. For example, for an axis group in CP
motion (even following motion), setting VelFactor or PathVelFactor to 0 will cause a sudden stop in the
motion trajectory. If MC_GroupStop is currently in an Active state, an error will be returned.

 MC_GroupStop instruction is not affected by the overshoot factor.
 Re-enable the axis group, and the overshoot factor remains valid.
 The default value of the overshoot factor is 1.
 Reducing AccFactor or JerkFactor can cause position overshoot and may cause damage to the equipment.

(4) Application

162

Example 1: Select the kinematic model of the two axes of the gantry, select the virtual axis for the X-axis, and
select the Ethercat real axis for the Y-axis. During the execution of the "MC-MoveLinearAbsolute" absolute
linear interpolation process, use the "MC_GroupSetOverride" axis group overshoot command to change the axis
group speed.

Programming: Set the current positions of both axes to 0, set the target position to (100, 100), perform absolute
linear interpolation motion with a starting point of (0,0), and set the axis group speed to 10u/s. Use the axis
group overshoot command to change the axis group speed to 5u/s.

163

In Trace, the current speed of the axis group can be seen. After conducting the axis group overshoot command,
the speed changes from 10u/s to 5u/s.

164

3-2-2-16. Absolute arc interpolation [MC_MoveCircularAbsolute]

(1) Instruction overview

Control the axis group to perform arc interpolation motion in absolute position mode.
Instruction Name Graphical representation ST language

MC_MoveCircularAbsolute
absolute arc
interpolation

(2) Related variables

VAR_IN_OUT Name Data type Effective range
Initial
value

Description

AxisGroup
axis
group

AXIS_GROUP_R
EF_SM3

- - specified axis group

VAR_INPUT Name Data type Effective range
Initial
value

Description

Execute valid BOOL TRUE/FALSE FALSE Execute current instruction

CircMode arc mode
SMC_CIRC_

MODE
Border/Center/

Radius
-

Specify the method of arc
interpolation:
Border: Three point arc
Center: Center arc
Radius: Radius arc

AuxPoint
Auxiliary
point

SMC_POS_
REF

- -
Specify auxiliary points in the
coordinate system. Refer to CircMode

EndPoint end point
SMC_POS_

REF
- -

Specify the end position in the
coordinate system

PathChoice direction
MC_CIRC_

PATHCHOICE

CLOCKWISE/
COUNTER_
CLOCKWISE

-

motion direction:
CLOCKWISE: clockwise
COUNTER_CLOCKWISE:
counterclockwise

165

Velocity speed LREAL
0, positive
number

0
Max resultant velocity [command
unit/s]

Deceleration
decelerati

on
LREAL positive number 0

Max resultant deceleration[command
unit/s2]

Jerk
jerk
speed

LREAL positive number 0
Max resultant jerk speed [command
unit/s3]

VAR_INPUT Name Data type Effective range
Initial
value

Description

CoordSystem
reference
coordinate
system

SMC_COORD_
SYSTEM

SMC_COORD_
SYSTEM

- reference coordinate system

BufferMode buffer mode
MC_BUFFER_

MODE
- 0

Action when specifying multiple start
motion commands

TransitionMode
Corner
transition
mode

MC_TRANSITIO
N_MODE

TMNone/
TMStartVelocity/
TMCornerDistanc

e

-

TMNone: No mixing
TMStartVelocity: Speed based mixing
TMCornerDistance: Distance based
mixing

TransitionParameter
Corner
transition
parameters

array
[0..(SMC_RCNS
T.MAX_TRANS
_PARAMS - 1)]
OF LREAL

0, positive
number

0 Corner transition parameters

OrientationMode
interpolation
positioning

mode

SMC_ORIEN
TATION_MODE

GreatCircle/
Axis

-

GreatCircle: Move along the shortest
path from the starting position to the
target position. In this mode, even if
the starting and ending positions are
within the specified area, the
implemented path may still leave this
area.
Axis: The positioning axis moves
within the specified area from the start
position to the end position, and not all
kinematic transformations support this
mode

VelFactor speed factor LREAL 0-1 1
Speed factor, the maximum speed of
each axis multiplied by this speed
factor, with a value between [0, 1]

AccFactor
acceleration

factor
LREAL 0-1 1

Acceleration factor, the maximum
velocity of each axis multiplied by this
acceleration factor, with a value
between [0,1]

JerkFactor
jerk speed
factor

LREAL 0-1 1
Jerk factor, the maximum velocity of
each axis multiplied by this jerk factor,
with a value between [0,1]

166

VAR_OUTPUT Name Data type Effective range
Initial
value

Description

Done completed BOOL TRUE/FALSE FALSE
TRUE when instruction execution is
completed

Busy executing BOOL TRUE/FALSE FALSE
True when the execution of the
function block has not yet ended

Active in control BOOL TRUE/FALSE FALSE Change to TRUE in control

CommandAborted
Instruction
interrupted

BOOL TRUE/FALSE FALSE Module execution interrupted is true

CommandAccepted
Motion
reception

BOOL TRUE/FALSE FALSE
True when the module successfully
calls the axis group

Error error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID error code SMC_ERROR - 0 Error recognition

MovementId motion flag
SMC_Movement

_Id
TRUE/FALSE FALSE

Valid when CommandAccepted or
Done is TRUE

(3) Function description

 The rising edge of the Execute triggers the command movement, while the falling edge has no effect on the
command movement.

 When using the center arc mode, input the values of parameters AuxPoint [1] and AuxPoint [2] as the
distance between the center of the circle and the starting point of the arc; When using the radius arc mode,
AuxPoint [1] represents the radius value, and AuxPoint [2] is invalid.

 The numerical values of EndPoint [1]~EndPoint [8] represent the endpoint coordinates of each axis

(4) Application

Example 1: Select the kinematic model of the two axes of the gantry, select the imaginary axis for the X-axis,
and select the Ethercat real axis for the Y-axis to perform an absolute arc interpolation.

167

Programming: Set the current positions of both axes to 0, select the arc mode as three points to determine an arc,
set AuxPoint to (50, 50), EndPoint to (100, 0), set the speed of both axes to 5, and draw an arc absolutely at the
origin (0, 0).

In the view, the arc trajectory can be

168

seen.

169

3-2-2-17. Relative arc interpolation [MC_MoveCircularRelative]

(1) Instruction overview

Control the axis group to perform circular interpolation motion in relative position mode.
Instruction Name Graphical representation ST language

MC_MoveCircularRelative
Relative arc
interpolation

(2) Related variables

VAR_IN_OUT Name Data type Effective range
Initial
value

Description

AxisGroup axis group
AXIS_GROUP_

REF_SM3
- - specified axis group

VAR_INPUT Name Data type Effective range
Initial
value

Description

Execute valid BOOL TRUE/FALSE FALSE Execute current instruction

CircMode arc mode
SMC_CIRC_

MODE
Border/Center/

Radius
-

Specify the method of arc
interpolation:
Border: Three point arc
Center: Center arc
Radius: Radius arc

AuxPoint
Auxiliary
point

SMC_POS_REF - -
Specify auxiliary points in the
coordinate system. Refer to
CircMode

EndPoint end point SMC_POS_REF - -
Specify the end position in the
coordinate system

PathChoice direction
MC_CIRC_

PATHCHOICE

CLOCKWISE/
COUNTER_
CLOCKWISE

-

motion direction:
CLOCKWISE: clockwise
COUNTER_CLOCKWISE:
counterclockwise

170

Velocity speed LREAL
0, positive
number

0
Max resultant speed [command
unit/s]

Deceleration deceleration LREAL positive number 0
Max resultant deceleration
[command unit/s2]

Jerk jerk speed LREAL positive number 0
Max resultant jerk speed [command
unit/s3]

CoordSystem
reference
coordinate
system

SMC_COORD
_SYSTEM

SMC_COORD_
SYSTEM

- reference coordinate system

VAR_INPUT Name Data type Effective range
Initial
value

Description

BufferMode buffer mode
MC_BUFFER

_MODE
- 0

specify the multiple start motion
commands action

TransitionMode
Corner
transition
mode

MC_TRANSITI
ON_MODE

TMNone/
TMStartVelocity/
TMCornerDistan

ce

-

TMNone: no mixing
TMStartVelocity: mixed based on
speed
TMCornerDistance: mixed based on
distance

TransitionParameter
Corner
transition
parameters

array
[0..(SMC_RCNS
T.MAX_TRANS
_PARAMS - 1)]
OF LREAL

0, positive
number

0 Corner transition parameters

OrientationMode
Interpolation
positioning

mode

SMC_ORIEN
TATION_MODE

GreatCircle/
Axis

-

GreatCircle:
Move along the shortest path from
the starting position to the target
position. In this mode, even if the
starting and ending positions are
within the specified area, the
implemented path may still leave
this area.
Axis: The positioning axis moves
within the specified area from the
start position to the end position, and
not all kinematic transformations
support this mode

VelFactor speed factor LREAL 0-1 1
Speed factor, the maximum speed of
each axis multiplied by this speed
factor, with a value between [0, 1]

AccFactor
acceleration

factor
LREAL 0-1 1

Acceleration factor, the maximum
velocity of each axis multiplied by
this acceleration factor, with a value
between [0,1]

JerkFactor jerk factor LREAL 0-1 1
Jerk factor, the maximum velocity of
each axis multiplied by this jerk
factor, with a value between [0,1]

171

VAR_OUTPUT Name Data type Effective range
Initial
value

Description

Done completed BOOL TRUE/FALSE FALSE
TRUE when instruction execution is
completed

Busy executing BOOL TRUE/FALSE FALSE
True when the execution of the
function block has not yet ended

Active in control BOOL TRUE/FALSE FALSE Change to TRUE in control

CommandAborted
Instruction
interrupted

BOOL TRUE/FALSE FALSE Module execution interrupted is true

CommandAccepted
Motion
reception

BOOL TRUE/FALSE FALSE
True when the module successfully
calls the axis group

Error error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID error code SMC_ERROR - 0 Error recognition

MovementId motion flag
SMC_Movement

_Id
TRUE/FALSE FALSE

Valid when CommandAccepted or
Done is TRUE

(3) Function description

 The rising edge of the Execute triggers the command movement, while the falling edge has no effect on the
command movement.

 When using the center arc mode, input the values of parameters AuxPoint [1] and AuxPoint [2] as the
distance between the center of the circle and the starting point of the arc. When using the radius arc mode,
AuxPoint [1] represents the radius value, and AuxPoint [2] is invalid.

 The numerical values of EndPoint [1]~EndPoint [8] represent the endpoint coordinates of each axis.

(4) Application

Example 1: Select the kinematic model of the two axes of the gantry, select the imaginary axis for the X-axis,
and select the Ethercat real axis for the Y-axis to perform a relative arc interpolation.

172

Programming: Set the current positions of both axes to 0, select the arc mode as three points to determine an arc,
set the auxiliary point AuxPoint to (50, 50), set the EndPoint to (50, -50), set the speed of both axes to 5, and
draw an arc relative to the current point (0, 0).

In the view, the arc trajectory can be seen.

173

174

3-2-2-18. Absolute position quick positioning [MC_MoveDirectAbsolute]

(1) Instruction overview

Control all axes within the axis group to run at the specified speed to the absolute position endpoint.
Instruction Name Graphical representation ST language

MC_MoveDirectAbsolute
Absolute position
quick positioning

(2) Related variables

VAR_IN_OUT Name Data type Effective range
Initial
value

Description

AxisGroup axis group
AXIS_GROUP_REF

_SM3
- - specified axis group

VAR_INPUT Name Data type Effective range
Initial
value

Description

Execute valid BOOL TRUE/FALSE FALSE Execute current instruction

Position position SMC_POS_REF - -
Absolute target position in the
specified reference coordinate system

MovementType
PTP motion

mode
SMC_PTP_MOVEMEN

T_TYPE
- -

Fast (0): PTP motion mode with time
priority
Path_ Invariant: PTP motion with
fixed path

CoordSystem
reference
coordinate
system

SMC_COORD_SYSTE
M

SMC_COORD_
SYSTEM

reference coordinate system

BufferMode buffer mode MC_BUFFER_MODE - 0
specify the multiple start motion
commands action

TransitionMode
Corner
transition
mode

MC_TRANSITION
_MODE

TMNone/
TMStartVelocity
/TMCornerDista

nce

-

TMNone: no mixing
TMStartVelocity: mixed based on
speed
TMCornerDistance: mixed based on
distance

Transition Corner array 0, positive 0 Corner transition parameters

175

Parameter transition
parameters

[0..(SMC_RCNST.MAX
_TRANS_PARAMS -
1)] OF LREAL

number

VelFactor speed factor LREAL 0-1 1
Speed factor, the maximum speed of
each axis multiplied by this speed
factor, with a value between [0, 1]

AccFactor
acceleration

factor
LREAL 0-1 1

Acceleration factor, the maximum
velocity of each axis multiplied by
this acceleration factor, with a value
between [0,1]

JerkFactor jerk factor LREAL 0-1 1
Jerk factor, the maximum velocity of
each axis multiplied by this jerk
factor, with a value between [0,1]

VAR_OUTPUT Name Data type Effective range
Initial
value

Description

Done completed BOOL TRUE/FALSE FALSE
TRUE when instruction execution is
completed

Busy executing BOOL TRUE/FALSE FALSE
True when the execution of the
function block has not yet ended

Active in control BOOL TRUE/FALSE FALSE Change to TRUE in control

CommandAborted
Instruction
interrupted

BOOL TRUE/FALSE FALSE Module execution interrupted is true

CommandAccepte
d

Motion
reception

BOOL TRUE/FALSE FALSE
True when the module successfully
calls the axis group

Error error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID error code SMC_ERROR - 0 Error recognition

MovementId motion flag SMC_Movement_Id TRUE/FALSE FALSE
True when the motion is being
executed or completed

(3) Function description

 In motion, each axis is a relatively independent absolute position motion, and its motion trajectory is
uncertain.

176

3-2-2-19. Relative position quick positioning [MC_MoveDirectRelative]

(1) Instruction overview

Control all axes within the axis group to run at the specified speed to the end point of the relative position.
Instruction Name Graphical representation ST language

MC_MoveDirectRelative
relative position quick

positioning

(2) Related variables

VAR_IN_OUT
Name Data type Effective range

Initial
value

Description

AxisGroup axis group
AXIS_GROUP_REF

_SM3
- - specified axis group

VAR_INPUT Name Data type Effective range
Initial
value

Description

Execute valid BOOL TRUE/FALSE FALSE Execute current instruction

Distance
relative
position

SMC_POS_REF - -
Relative target position in the specified
reference coordinate system

MovementType
PTP motion

mode
SMC_PTP_MOVEM

ENT_TYPE
- -

Fast (0): PTP motion mode with time
priority
Path_ Invariant: PTP motion with fixed
path

CoordSystem
reference
coordinate
system

SMC_COORD_
SYSTEM

SMC_COORD_
SYSTEM

reference coordinate system

BufferMode buffer mode
MC_BUFFER_MOD

E
- 0

specify the multiple start motion
commands action

TransitionMode
Corner
transition
mode

MC_TRANSITION_
MODE

TMNone/TMSta
rtVelocity/TMC
ornerDistance

TMNone: no mixing
TMStartVelocity: mixed based on speed
TMCornerDistance: mixed based on
distance

Transition
Parameter

Corner
transition
parameters

array
[0..(SMC_RCNST.M
AX_TRANS_PARA

0, positive
number

0 Corner transition parameters

177

MS - 1)] OF
LREAL

VelFactor speed factor LREAL 0-1 1
Speed factor, the maximum speed of
each axis multiplied by this speed factor,
with a value between [0, 1]

AccFactor
acceleration

factor
LREAL 0-1 1

Acceleration factor, the maximum
velocity of each axis multiplied by this
acceleration factor, with a value between
[0,1]

VAR_INPUT Name Data type Effective range
Initial
value

Description

JerkFactor jerk factor LREAL 0-1 1
Jerk factor, the maximum velocity of
each axis multiplied by this jerk
factor, with a value between [0,1]

VAR_OUTPUT Name Data type Effective range
Initial
value

Description

Done completed BOOL TRUE/FALSE FALSE
TRUE when instruction execution is
completed

Busy executing BOOL TRUE/FALSE FALSE
True when the execution of the function
block has not yet ended

Active in control BOOL TRUE/FALSE FALSE Change to TRUE in control
Command
Aborted

Instruction
interrupted

BOOL TRUE/FALSE FALSE Module execution interrupted is true

Command
Accepted

Motion
reception

BOOL TRUE/FALSE FALSE
True when the module successfully calls
the axis group

Error error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID error code SMC_ERROR - 0 Error recognition

MovementId motion flag
SMC_Movement_I

d
TRUE/FALSE FALSE

True when the motion is being executed
or completed

(3) Function description

 In motion, each axis is a relatively independent absolute position motion, and its motion trajectory is
uncertain.

178

3-2-2-20. Absolute position linear interpolation [MC_MoveLinearAbsolute]

(1) Instruction overview

The linear interpolation motion of the absolute position mode of the control axis group in the specified
coordinate system.

Instruction Name Graphical representation ST language

MC_MoveLinearAbsolute

absolute
position
linear

interpolation

(2) Related variables

VAR_IN_OUT
Name Data type Effective range

Initial
value

Description

AxisGroup axis group
AXIS_GROUP_

REF_SM3
- - specified axis group

VAR_INPUT Name Data type Effective range
Initial
value

Description

Execute valid BOOL TRUE /FALSE FALSE Execute current instruction

Position position SMC_POS_REF - -
Absolute target position in the specified
reference coordinate system

Velocity speed LREAL
0, positive
number

0 Max resultant speed [command unit/s]

Acceleration acceleration LREAL
positive number

0
Max resultant acceleration [command
unit /s2]

Deceleration deceleration LREAL
positive number

0
Max resultant deceleration [command
unit /s2]

Jerk jerk speed LREAL
positive number

0
Max resultant jerk speed [command unit
/s3]

CoordSystem
reference
coordinate
system

SMC_COORD_
SYSTEM

SMC_COORD_
SYSTEM

- reference coordinate system

BufferMode buffer mode
MC_BUFFER_

MODE
- 0

specify the multiple start motion
commands action

179

TransitionMode
Corner
transition
mode

MC_TRANSITIO
N_MODE

TMNone/TMSta
rtVelocity/TMC
ornerDistance

-

TMNone: no mixing
TMStartVelocity: mixed based on speed
TMCornerDistance: mixed based on
distance

TransitionParameter
Corner
transition
parameters

array
[0..(SMC_RCNS
T.MAX_TRANS_
PARAMS - 1)]
OF LREAL

0, positive
number

0 corner transition parameters

VAR_INPUT Name Data type Effective range
Initial
value

Description

OrientationMode
interpolation
positioning

mode

SMC_ORIENTA
TION_MODE

GreatCircle/
Axis

-

GreatCircle: Move along the shortest
path from the starting position to the
target position. In this mode, even if the
starting and ending positions are within
the specified area, the implemented path
may still leave this area.
Axis: The positioning axis moves within
the specified area from the start position
to the end position, and not all kinematic
transformations support this mode

VelFactor speed factor LREAL 0-1 1
Speed factor, the maximum speed of
each axis multiplied by this speed factor,
with a value between [0, 1]

AccFactor
acceleration

factor
LREAL 0-1 1

Acceleration factor, the maximum
velocity of each axis multiplied by this
acceleration factor, with a value between
[0,1]

JerkFactor jerk factor LREAL 0-1 1
Jerk factor, the maximum velocity of
each axis multiplied by this jerk factor,
with a value between [0,1]

VAR_OUTPUT Name Data type Effective range
Initial
value

Description

Done completed BOOL TRUE/FALSE FALSE
TRUE when instruction execution is
completed

Busy executing BOOL TRUE/FALSE FALSE
True when the execution of the function
block has not yet ended

Active in control BOOL TRUE/FALSE FALSE Change to TRUE in control

CommandAborted
Instruction
interrupted

BOOL TRUE/FALSE FALSE Module execution interrupted is true

CommandAccepted
Motion
reception

BOOL TRUE/FALSE FALSE
True when the module successfully calls
the axis group

Error error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID error code SMC_ERROR - 0 Error recognition

MovementId motion flag SMC_Movemen TRUE/FALSE FALSE True when the motion is being executed

180

t_Id or completed

(3) Function description

 Control the linear interpolation motion of the axis group in the absolute position mode under the specified
coordinate system.

 The relationship between the parameters BufferMode, TransitionMode, and TransitionParameter is
explained as follows:
(1) When BufferMode selects mcBuffered mode, TransitionMode only supports mcTMNone mode;
(2) When BufferMode selects mcBlendingPrevious mode, TransitionMode can be selected.

 McTMConstantVelocity and mcTMCornerDistance modes.

Example 1: Select the kinematic model of the two axes of the gantry, select the imaginary axis for the X-axis,
and select the Ethercat real axis for the Y-axis to perform an absolute position interpolation.

Programming: Set the current positions of both axes to 0, set the position to (100, 100), and perform absolute
linear interpolation motion starting from the starting point (0,0).

181

In the view, the straight line trajectory can be seen.

182

3-2-2-21. Relative position linear interpolation [MC_MoveLinearRelative]

(1) Instruction overview

The linear interpolation motion of the relative position mode of the control axis group in the specified
coordinate system.

Instruction Name Graphical representation ST language

MC_MoveLinearRelative
relative position

linear interpolation

(2) Related variables

VAR_IN_OUT Name Data type
Effective
range

Initial
value

Description

AxisGroup axis group
AXIS_GROUP_REF

_SM3
- - specified axis group

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Execute valid BOOL TRUE/FALSE FALSE Execute current instruction

Distance
relative
position

SMC_POS_REF - -
Relative target position in the specified
reference coordinate system

Velocity speed LREAL
0, positive
number

0 Max resultant speed [command unit/s]

Acceleration acceleration LREAL
positive
number

0
Max resultant acceleration [command
unit /s2]

Deceleration deceleration LREAL
positive
number

0
Max resultant deceleration [command
unit /s2]

Jerk jerk speed LREAL
positive
number

0
Max resultant jerk speed [command
unit /s3]

CoordSystem
reference
coordinate
system

SMC_COORD_
SYSTEM

SMC_COOR
D_SYSTEM

- reference coordinate system

BufferMode buffer mode MC_BUFFER_ - 0 specify the multiple start motion

183

VAR_IN_OUT Name Data type
Effective
range

Initial
value

Description

MODE commands action

TransitionMode
Corner
transition
mode

MC_TRANSITION_
MODE

TMNone/TMS
tartVelocity/T
MCornerDista

nce

-

TMNone: no mixing
TMStartVelocity: mixed based on
speed
TMCornerDistance: mixed based on
distance

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

TransitionParameter
Corner
transition
parameters

array
[0..(SMC_RCNST.M
AX_TRANS_PARA

MS - 1)] OF
LREAL

0, positive
number

0 Corner transition parameters

OrientationMode
Interpolation
positioning

mode

SMC_ORIENTATIO
N_MODE

GreatCircle
/Axis

-

GreatCircle: Move along the shortest
path from the starting position to the
target position. In this mode, even if
the starting and ending positions are
within the specified area, the
implemented path may still leave this
area.
Axis: The positioning axis moves
within the specified area from the start
position to the end position, and not all
kinematic transformations support this
mode

VelFactor speed factor LREAL 0-1 1
Speed factor, the maximum speed of
each axis multiplied by this speed
factor, with a value between [0, 1]

AccFactor
acceleration

factor
LREAL 0-1 1

Acceleration factor, the maximum
velocity of each axis multiplied by this
acceleration factor, with a value
between [0,1]

JerkFactor jerk factor LREAL 0-1 1
Jerk factor, the maximum velocity of
each axis multiplied by this jerk factor,
with a value between [0,1]

VAR_OUTPUT Name Data type
Effective
range

Initial
value

Description

Done completed BOOL TRUE/FALSE FALSE
TRUE when instruction execution is
completed

Busy executing BOOL TRUE/FALSE FALSE
True when the execution of the
function block has not yet ended

184

Active in control BOOL TRUE/FALSE FALSE Change to TRUE in control

CommandAborted
Instruction
interrupted

BOOL TRUE/FALSE FALSEModule execution interrupted is true

CommandAccepted
Motion
reception

BOOL TRUE/FALSE FALSE
True when the module successfully
calls the axis group

Error error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID error code SMC_ERROR - 0 Error recognition

MovementId motion flag SMC_Movement_Id TRUE/FALSE FALSE
True when the motion is being
executed or completed

(3) Function description

 The parameter TransitionParameter is only valid when the TransitionMode is mcTMCornerDistance.

(4) Application

Example 1: Select the kinematic model of the two axes of the gantry, select the imaginary axis for the X-axis,
and select the Ethercat real axis for the Y-axis to perform a relative position interpolation.

Programming: Set the current positions of both axes to 0, that is, the starting position is (0, 0), the absolute
linear interpolation position is set to (100, 100), and then the relative linear interpolation position is set to (0,
-100).

185

In the view, the straight line trajectory can be seen.

186

3-2-2-22. Read the feedback position of the axis group [MC_GroupReadActualPosition]

(1) Instruction overview

Read the feedback position of the axis group in the specified coordinate system.
Instruction Name Graphical representation ST language

MC_GroupReadActualPosition

read axis
group

feedback
position

(2) Related variables

VAR_IN_OUT Name Data type
Effective
range

Initial
value

Description

AxisGroup axis group AXIS_GROUP_REF_SM3 - - specified axis group

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Enable valid BOOL TRUE/FALSE FALSE
Must be set to TRUE to
activate the processing of the
function block

CoordSystem
Apply

coordinate
system

SMC_COORD_SYSTEM - - Apply coordinate system

VAR_OUTPUT Name Data type
Effective
range

Initial
value

Description

Valid obtain flag BOOL TRUE/FALSE FALSE
If the output value is valid,
then it is TRUE

Busy executing BOOL TRUE/FALSE FALSE
True when the execution of
the function block has not yet
ended

Error error BOOL TRUE/FALSE FALSE
Function block execution
error

ErrorID error code SMC_ERROR - 0 error recognization
Position position SMC_POS_REF - - axis group actual position

KinematicConfig
kinematic

configuration
TRAFO.CONFIGDATA - -

The kinematic configuration
of the current position. Only
set when the coordinate
system is Cartesian (i.e. not
set in ACS)

187

3-2-2-23. Read the feedback speed of the axis group [MC_GroupReadActualVelocity]

(1) Instruction overview

Read the feedback speed of the axis group in the specified coordinate system.
Instruction Name Graphical representation ST language

MC_GroupReadActualVelocity

read axis
group

feedback
speed

(2) Related variables

VAR_IN_OUT
Name Data type

Effective
range

Initial
value

Description

AxisGroup
axis
group

AXIS_GROUP_REF_SM3 - - specified axis group

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Enable valid BOOL TRUE/FALSE FALSE
Must be set to TRUE to activate the
processing of the function block

CoordSystem
Apply

coordinat
e system

SMC_COORD_SYSTEM - - Apply coordinate system

VAR_OUTPUT Name Data type
Effective
range

Initial
value

Description

Valid
obtain
flag

BOOL TRUE/FALSE FALSE
If the output value is valid, then it is
TRUE

Busy executing BOOL TRUE/FALSE FALSE
True when the execution of the
function block has not yet ended

Error error BOOL TRUE/FALSE FALSE Function block execution error

ErrorID
error
code

SMC_ERROR - 0 error recognization

Velocity speed SMC_POS_REF - -

The current feedback speed of the
axis group. If the Cartesian
coordinate system is selected;
Velocity. c contains Cartesian
velocities: (X, Y, Z) is the velocity
vector, and (A, B, C) is the angular
velocity around the x, y, and z axes,
respectively

188

3-2-2-24. Read axis group configuration parameters [MC_GroupReadConfiguration]

(1) Instruction overview

Read the configuration parameters such as axis and quantity contained in the axis group.
Instruction Name Graphical representation ST language

MC_GroupReadConfiguration

read axis
group

configuration
parameters

(2) Related variables

VAR_IN_OUT
Name Data type

Effective
range

Initial
value

Description

AxisGroup
axis
group

AXIS_GROUP_REF_SM3 - - specified axis group

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Enable valid BOOL TRUE/FALSE FALSE
Must be set to TRUE to activate the
processing of the function block

IdentInGroup
axis

number
IDENT_IN_GROUP_REF_

SM3
0, positive
number

0
Enter the number of the
corresponding axis in the axis group

VAR_OUTPUT Name Data type
Effective
range

Initial
value

Description

pAxis
reference
axis

POINTER TOAXIS_REF_
SM3

- - selected reference axis

NumAxes
axis

quantity
UDINT

0, positive
number

0 axis quantity in the axis group

Valid
obtain
flag

BOOL TRUE/FALSE FALSE
If the output value is valid, then it is
TRUE

Busy executing BOOL TRUE/FALSE FALSE
True when the execution of the
function block has not yet ended

Error error BOOL TRUE/FALSE FALSE Function block execution error

ErrorID
error
code

SMC_ERROR - 0 error recognization

189

3-2-2-25. Read axis group error [MC_GroupReadError]

(1) Instruction overview

Obtain error information for the axis group.
Instruction Name Graphical representation ST language

MC_GroupReadError
read axis group

error

(2) Related variables

VAR_IN_OUT
Name Data type

Effective
range

Initial
value

Description

AxisGroup
axis
group

AXIS_GROUP_REF
_SM3

- - specified axis group

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Enable valid BOOL TRUE/FALSE FALSE
Must be set to TRUE to activate the
processing of the function block

VAR_OUTPU
T

Name Data type
Effective
range

Initial
value

Description

Valid
obtain
flag

BOOL TRUE/FALSE FALSE If the output value is valid, then it is TRUE

Busy executing BOOL TRUE/FALSE FALSE
True when the execution of the function
block has not yet ended

Error error BOOL TRUE/FALSE FALSE Function block execution error

ErrorID
error
code

SMC_ERROR - 0 Single axis error code indication

GroupErrorID
error
code

SMC_ERROR - 0 Axis group error code indication

(3) Function description

 Obtain error information for single axis and axis group, such as reading hard limit (or soft limit) or single
axis error.

190

3-2-2-26. Read the current operating status of the axis group [MC_GroupReadStatus]

(1) Instruction overview

Used to obtain the current motion state of the axis group.
Instruction Name Graphical representation ST language

MC_GroupReadStatus
read axis group
current motion

status

(2) Related variables

VAR_IN_OUT
Name Data type

Effective
range

Initial
value

Description

AxisGroup axis group
AXIS_GROUP_REF

_SM3
- - specified axis group

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Enable valid BOOL TRUE/FALSE FALSE
Must be set to TRUE to activate
the processing of the function
block

VAR_OUTPUT Name Data type
Effective
range

Initial
value

Description

Valid obtain flag BOOL TRUE/FALSE FALSE
If the output value is valid, then it
is TRUE

Busy executing BOOL TRUE/FALSE FALSE
True when the execution of the
function block has not yet ended

Error error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID error code SMC_ERROR - 0 Single axis error code indication

GroupErrorID error code SMC_ERROR - 0 Axis group error code indication
GroupMoving moving BOOL TRUE/FALSE FALSE Axis group in motion is TRUE
GroupHoming homing BOOL TRUE/FALSE FALSE Axis group homing is TRUE
GroupErrorStop error stop BOOL TRUE/FALSE FALSE Axis group error stop is true

GroupStandby
ready to
move

BOOL TRUE/FALSE FALSE
Axis group motion preparation
status is TRUE

GroupStopping stopping BOOL TRUE/FALSE FALSE
True when the axis group
movement stops

GroupDisabled
not enable
axis group

BOOL TRUE/FALSE FALSE
Axis group invalid status is
TRUE

TrackingDynamicCS Currently in BOOL TRUE/FALSE FALSE True when currently using a

191

a dynamic
coordinate
system

dynamic coordinate system

InSync
On the path
or already in

place
BOOL TRUE/FALSE FALSE

True in continuous interpolation
motion when the obtained
position belongs to the specified
path; In normal point position and
interpolation motion, it is true
when the current position is equal
to the target position

ActiveMovementId
motion
segment
number

SMC_Movement_Id
0, positive
number

-
The identifier of the activity
movement. Id=0 indicates no
active movement

VAR_OUTPUT Name Data type
Effective
range

Initial
value

Description

LastAcceptedMovem
entId

motion
segment
number

SMC_Movement_Id
0, positive
number

0
The identifier of the last accepted
motion. Id=0 indicates that no
action has been taken yet

(3) Function description

 Calling this command can continuously obtain information such as the motion status of the axis group,
whether it is in place, and the motion segment number.

3-2-2-27. Startup the axis group [SMC_StartupAxisGroup]

(1) Instruction overview

Used for testing and debugging axis groups.
Instruction Name Graphical representation ST language

SMC_StartupAxisGroup
startup
the axis
group

(2) Related variables

VAR_IN_O
UT

Name Data type
Effective
range

Initial
value

Description

AxisGroup
axis
group

AXIS_GROUP_REF_SM3 - - specified axis group

192

3-2-2-28. Enable the axis group [SMC_GroupPower]

(1) Instruction overview

Enable all axes under the axis group, equivalent to calling MC_Power for all axes under the axis group.

Instruction Name Graphical representation ST language

SMC_GroupPower
enable the
axis group

(2) Related variables

VAR_IN_OUT
Name Data type

Effective
range

Initial
value

Description

AxisGroup
axis
group

AXIS_GROUP_REF_SM3 - - specified axis group

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Enable valid BOOL TRUE/FALSEFALSE
Enter TRUE to start the module
running

bRegulatorOn enable BOOL TRUE/FALSEFALSESet TRUE to enable the axis group

bDriveStart
enable
drive

BOOL TRUE/FALSEFALSE
Must be set to TRUE to turn off
emergency stop processing for the
function block

VAR_OUTPUT Name Data type
Effective
range

Initial
value

Description

Status can run BOOL TRUE/FALSEFALSETrue when the axis group is ready

Valid
obtain
flag

BOOL TRUE/FALSEFALSE
If the output value is valid, then it is
TRUE

Busy executing BOOL TRUE/FALSEFALSE
True when the execution of the
function block has not yet ended

Error error BOOL TRUE/FALSEFALSEFunction block execution error

ErrorID
error
code

SMC_ERROR - 0 error code

193

3-2-2-29. Break Assignment [SMC_GroupInterruptAt]

(1) Instruction overview

Interrupt the currently moving axis group.
Instruction Name Graphical representation ST language

SMC_GroupInterruptAt
break

assignment

(2) Related variables

VAR_IN_OUT Name Data type
Effective
range

Initial
value

Description

AxisGroup axis group
AXIS_GROUP_REF_

SM3
- - specified axis group

continueData
Continuing
motion data

SMC_AXIS_GROUP_C
ONTINUE_DATA

- -
Motion information when axis
group motion is interrupted

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Execute valid BOOL TRUE/FALSE FALSE Execute current instruction

Position position
SMC_GroupInterrupt

Position
- -

The location where the ongoing
movement will be interrupted

VAR_OUTPUT Name Data type
Effective
range

Initial
value

Description

Done completed BOOL TRUE/FALSE FALSE
TRUE when instruction execution
is completed

Busy executing BOOL TRUE/FALSE FALSE
True when the execution of the
function block has not yet ended

Interrupting interrupting BOOL TRUE/FALSE FALSE
Signal indicating that the function
block is currently being interrupted

CommandAborted
Instruction
interrupted

BOOL TRUE/FALSE FALSE
Module execution interrupted is
true

Error error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID error code SMC_ERROR - 0 Error code

mvtIdInterrupt
Position

Interrupt
location ID

- - -
MovemenID corresponding to the
interrupt location

194

3-2-2-30. Reboot after error reset [SMC_GroupEnableResumeAfterError]

(1) Instruction overview

Restore the axis group state that was interrupted due to an error.
Instruction Name Graphical representation ST language

SMC_GroupEnableResume
AfterError

restart after
error reset

(2) Related variables

VAR_IN_OUT
Name Data type

Effective
range

Initial
value

Description

AxisGroup axis group AXIS_GROUP_REF_SM3 - - specified axis group

continueData
Continuing
motion data

SMC_AXIS_
GROUP_CONTINUE_DATA

- -
Axis group position during
motion interruption

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Enable valid BOOL TRUE/FALSE FALSE Enable command function

VAR_OUTPUT Name Data type
Effective
range

Initial
value

Description

Busy executing BOOL TRUE/FALSE FALSE
True when the execution of
the function block has not
yet ended

Active in call BOOL TRUE/FALSE FALSEWriting resume data

195

3-2-2-31. Axis group jog run [SMC_GroupJog]

(1) Instruction overview

Control the axis group to perform Jog motion in the specified coordinate system.
Instruction Name Graphical representation ST language

SMC_GroupJog
axis group
jog run

(2) Related variables

VAR_IN_OUT Name Data type
Effective
range

Initial
value

Description

AxisGroup axis group
AXIS_GROUP_

REF_SM3
- - specified axis group

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Execute valid BOOL TRUE/FALSE FALSE Execute current instruction

CoordSystem
reference
coordinate
system

SMC_COORD_
SYSTEM

- - reference coordinate system

CoordSystemPCS
PCS

coordinate
system

SMC_COORD_
SYSTEM

- -

The internal coordinate system used for
jogging is PCS, and
SMC_SetDynCoordTransformEx is used
when needed to make changes

VelFactor speed factor LREAL 0-1 1
Speed factor, the maximum speed of each
axis multiplied by this speed factor, with a
value between [0, 1]

AccFactor
acceleration

factor
LREAL 0-1 1

Acceleration factor, the maximum velocity
of each axis multiplied by this acceleration
factor, with a value between [0,1]

JerkFactor jerk factor LREAL 0-1 1
Jerk factor, the maximum velocity of each
axis multiplied by this jerk factor, with a
value between [0,1]

AxisX Axis X IAxisRef - 0
The X-axis in the coordinate system is set to
0 if it is not used

AxisY Axis Y IAxisRef - 0 The Y-axis in the coordinate system is set to

196

0 if it is not used

AxisZ Axis Z IAxisRef - 0
The Z-axis in the coordinate system is set to
0 if it is not used

AxisA Axis A IAxisRef - 0
Control the a-coordinate (rotation around
the z-axis) or the axis of the first tool axis.
If not applicable, set to 0

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

AxisB Axis B IAxisRef - 0
Control the b coordinate (rotation around
the y axis) or the axis of the second tool
axis. If not applicable, set to 0

AxisC Axis C IAxisRef - 0
Control the c-coordinate (rotation around
the z axis) or the axis of the third tool axis.
If not applicable, set to 0

ABC_as_ACS
Start

coordinate
conversion

BOOL TRUE/FALSE FALSE

If true, the positions of AxisA, AxisB, and
AxisC will be interpreted as the target
position of the tool's kinematic axis,
otherwise represented as the ZYZ direction.
If CoordSystem is set to ACS, it will be
ignored. If true, the kinematic
transformation of the axis group must be
Kin_ Coupled type and supports
SMC_ORIENTATION_MODE.Axis

VAR_OUTPUT Name Data type
Effective
range

Initial
value

Description

Busy executing BOOL TRUE/FALSE FALSE
True when the execution of the function
block has not yet ended

InitialPosition
Reached

Received
location

BOOL TRUE/FALSE FALSE -

CommandAborted
Instruction
interrupted

BOOL TRUE/FALSE FALSE Module execution interrupted is true

Error error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID error code SMC_ERROR - 0 error code

(3) Function description

 When the axis group undergoes JOG motion (jog), it will move according to the position and direction
provided by the configured axis.

 The command will convert the input coordinate system into the target coordinate system for output, such as
JOG motion in a machine coordinate system using MCS.

 Set ABC_as_ACS parameters is using a hybrid transformation of the reference axis, where X/Y/Z is the
position of the Cartesian coordinate system and A/B/C is the position of the tool coordinate system.

 When the product coordinate system is used for real-time changes in position, it can be achieved by
configuring the input coordinate system CoordSystemPCS, and the real-time changes of the axis group in
the coordinate system need to be marked.

197

 To restart this FB without changing CoordSystemPCS, it is necessary to add another move command, such
as MC_GroupHalt. If this usage principle is not followed, the error SMC_ AXIS_ GROUP_ PCS_ STILL_
IN_USE will be returned.

3-2-2-32. Axis group wait [SMC_GroupWait]

(1) Instruction overview

Set the delay waiting for the axis group.
Instruction Name Graphical representation ST language

SMC_GroupJog
axis group

wait

(2) Related variables

VAR_IN_OUT Name Data type
Effective
range

Initial
value

Description

AxisGroup axis group
AXIS_GROUP_

REF_SM3
- - specified axis group

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Execute valid BOOL TRUE/FALSE FALSE Execute current instruction

WaitTime wait time LREAL
0, positive
number

0
The time to wait on the path, in
seconds

VAR_OUTPUT Name Data type
Effective
range

Initial
value

Description

Done completed BOOL TRUE/FALSE FALSE
TRUE when instruction execution is
completed

Busy executing BOOL TRUE/FALSE FALSE
True when the execution of the
function block has not yet ended

Active in control BOOL TRUE/FALSE FALSE Change to TRUE in control

CommandAborted
Instruction
interrupted

BOOL TRUE/FALSE FALSEModule execution interrupted is true

CommandAccepted
motion
accepted

BOOL TRUE/FALSE FALSE
True when the module successfully
calls the axis group

Error error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID error code SMC_ERROR - 0 error code

MovementId motion flag SMC_Movement_Id TRUE/FALSE FALSE True when the motion is being

198

VAR_IN_OUT Name Data type
Effective
range

Initial
value

Description

executed or completed

(3) Function description

 If the waiting time between two adjacent instructions and the time configured for the task are the same, the
actual waiting time between two movements through SMC_ GroupWait instruction has become fewer, for
example, the execution of the next instruction usually starts from the next cycle of the task cycle, but if
there is a SMC_GroupWait in the middle, then After the delay of the SMC_GroupWait instruction ends, it
will immediately start the next motion instruction without waiting for the start of the next cycle of the task
cycle.

 If there is a waiting command after tracking the movement, the axis group will track the endpoint of the
previous movement within the specified time.

 If each axis is not in a Standstill state but is not controlled by the axis group and waits to be called, the axis
group will report an error SMC_AXIS_GROUP_IDLE_WAIT_AXES_MOVING.

 Unlike updating every cycle of the task cycle, If the time of the SMC_ GroupWait instruction is different
from a multiple of the bus cycle time, it can also immediately follow the next instruction after the waiting
time, making subsequent movements smoother to start.

 Due to technical reasons, the waiting time can be increased by up to one cycle in the following situations: -
non-tracking -> waiting -> tracking - tracking -> waiting -> non-tracking - tracking -> waiting ->
PTP-tracking.

199

3-2-3. Axis group function application

Example: This routine introduces the implementation of motion control for a SCARA system with two nodes.

Program operation:
(1) Right click on "Application" in the engineering equipment bar, select "Add Object" - "AxisGroup",

name it AxisGroup, and open it. Select the SCARA kinematic model through the "Kinematic Model"
interface.

(2) Configure kinematic parameters: Set the length of the large and small arms to 500, and have zero angle
offset. Axis parameter configuration, at mapping axis positions.

200

(3) Write kinematic instructions and configure motion parameters based on motion trajectory

201

3-3. CAM function

3-3-1. CAM instruction list
Instruction Description

MC_CamTableSelect Connect the selected CAM table to the actual cam table
MC_CamIn Cam binding
MC_CamOut Cam unbinding

MC_GearIn Set the gear ratio of the main and slave axis and activate the
electronic gears

MC_GearInPos Set the synchronization distance and gear ratio of the master and
slave axis and activate the electronic gear

MC_GearOut Disconnect the main and slave axis electronic gears
MC_Phasing Phase offset
SMC_CAMBounds Spindle coupling slave axis
SMC_CAMBounds_Pos Slave axis coupling spindle
SMC_CamEditor Display cam table in visualization
SMC_CamRegister Only read tappet information
SMC_GetCamSlaveSetPosition Obtain cam table slave axis position
SMC_GetTappetValue Evaluate output tappets
SMC_ReadCAM Read the cam table
SMC_WriteCAM Write the cam table

202

3-3-2. CAM instructions

3-3-2-1. Cam table designation [MC_CamTableSelect]

(1) Instruction overview

Used to select the cam table to be executed, which needs to be used together with MC_CamIn command.

Instruction Name Graphical representation ST language

MC_CamTableSelect
cam table
designation

(2) Related variables

VAR_IN_OUT Name Data type Effective range Initial
value Description

Master Master axis AXIS_REF - - map to the master axis
Slave slave axis AXIS_REF - - map to the slave axis

CamTable cam table MC_CAM_REF - - map to cam table description
VAR_INPUT Name Data type Effective range Initial

value Description

Execute valid BOOL TRUE/FALSE FALSE Rising edge signal, execute current
command

Periodic repetitive
mode BOOL TRUE/FALSE FALSE

TRUE: Execute the specified cam
table periodically and repeatedly
FALSE: Execute the cam table only
once

MasterAbsolute
master axis
absolute
mode

BOOL TRUE/FALSE FALSE

TRUE: represents absolute
coordinates
FALSE: represents relative
coordinates

SlaveAbsolute
slave axis
absolute
mode

BOOL TRUE/FALSE FALSE

TRUE: represents absolute
coordinates
FALSE: represents relative
coordinates

VAR_OUTPUT Name Data type Effective range Initial
value Description

Done completed BOOL TRUE/FALSE FALSE TRUE when instruction execution is
completed

Busy executing BOOL TRUE/FALSE FALSE True when the execution of the
function block has not yet ended

Error error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID error code SMC_ERROR - 0 Error recognition

CamTableID effective
CAMID MC_CAM_ID - -

Select effective Cam_ID, used
together with CamTableID in
MC_CamIn

(3) Function description

javascript:navigateTo('SM3_Basic',%20'rAtY08YBV_K3o1AeeUFVzNRWMvE/MC_CAM_ID',%20'4.9.0.0');

203

 This instruction is implemented by the "SM3_Basic" library.
 This command is used to specify the cam table required for electronic cam operation, so before using this

command, the cam table must be edited (by the cam editor or online editing).
 Execute the specified cam table at the rising edge of Execute, or refresh the specified cam table after

updating the cam table.
 When the Done signal output is TRUE, the output variable "CamTableID" is generated and takes effect.
 The main and slave axis cannot be specified as the same axis, otherwise there will be an error output.

3-3-2-2. CAM binding [MC_CamIn]

(1) Instruction overview

Master slave axis binding, can set the engagement mode and related speed of the slave axis.

Instruction Name Graphical representation ST language

MC_CamIn
Cam

action start

(2) Related variables

VAR_IN_OUT Name Data type Effective range Initial
value Description

Master master axis AXIS_REF - - map to master axis
Slave slave axis AXIS_REF - - map to slave axis

VAR_INPUT Name Data type Effective range Initial
value Description

Execute valid BOOL TRUE/FALSE FALSE Rising edge signal, execute
current command

MasterOffset master axis
offset LREAL - 0 master table offset

SlaveOffset slave axis offset LREAL - 0 slave table offset

MasterScaling master axis scale LREAL - 1 Scale factor of the main
configuration file

SlaveScaling slave axis scale LREAL - 1 Scale factor for slave
configuration files

StartMode
engagement

method of slave
axis

MC_StartMode 0-4 absolute
0: absolute position
1: relative position
2: ramp_in (ramp in)

204

3: ramp_in_pos (positive ramp in)
4: ramp_in_neg (negative ramp
im)

CamTableID cam table MC_CAM_ID - -

Define the using of cam table,
output point of
MC_CamTableSelect, used
together with CamTableID

VelocityDiff speed LREAL Negative number,
0, positive number 0 Maximum velocity of

superimposed motion [u/s]

Acceleration target
acceleration LREAL Negative number,

0, positive number 0 acceleration [u/s2]

Deceleration target
deceleration LREAL Negative number,

0, positive number 0 deceleration [u/s2]

Jerk target jerk speed LREAL Negative number,
0, positive number 0 jerk speed [u/s3]

TappetHysteres
is tappet hysteresis LREAL - - tappet hysteresis

VAR_OUTPUT Name Data type Effective range Initial
value Description

InSync cam take
effect BOOL TRUE/FALSE FALSE

TRUE indicates that the slave axis
is synchronized with the spindle
based on the cam table

Busy executing BOOL TRUE/FALSE FALSE True when the execution of the
function block has not yet ended

CommandAborted Instruction
interrupted BOOL TRUE/FALSE FALSE Module execution interrupted is

true
Error error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID error code SMC_ERROR - 0 Error recognition

EndOfProfile curve
completed BOOL TRUE/FALSE FALSE Pulse output: The cycle of cam

contour ends

Tappets tappet table SMC_TappetDat
a - - for tappet signal processed by

SMC_GetTappetValue

(3) Function description

 This instruction is implemented by the "SM3_Basic" library.
 This command can perform synchronous cam action as the cam table for the phase (spindle) and

displacement (slave axis).
 There are two production methods for the cam table specified by this instruction:

(1) Compile using a cam editor;
(2) Build a cam table data structure through programming.

 In a cam system, to call a cam curve, first call MC_CamTableSelect command to select the corresponding
cam table and then executes MC_CamIn. If you want to replace the cam curve, then call
MC_CamTableSelect again to reselect the cam table.

 Need to use MC_CamOut command to release the cam coupling relationship between the master and slave
axis.

 When the command is executed, the cam relationship between the slave axis and the spindle will be
released when the slave axis of the command executes other motion commands, and Command-Aborted
variable of MC_CamIn is output as TRUE.

205

3-3-2-3. Cam unbinding [MC_CamOut]

(1) Instruction overview

Release the cam coupling relationship between the specified slave axis and its corresponding spindle.

Instruction Name Graphical representation ST language

MC_CamOut
release the
cam action

(2) Related variables

VAR_IN_OUT Name Data type Effective range Initial
value Description

Slave slave axis AXIS_REF - - map to the axis

VAR_INPUT Name Data type Effective range Initial
value Description

Execute valid BOOL TRUE/FALSE FALSE Rising edge signal, execute current
command

VAR_OUTPUT Name Data type Effective range Initial
value Description

Done completed BOOL TRUE/FALSE FALSE TRUE when instruction execution is
completed

Busy executing BOOL TRUE/FALSE FALSE True when the execution of the
function block has not yet ended

Error error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID error code SMC_ERROR - 0 Error recognition

(3) Function description

 This instruction is implemented by the "SM3_Basic" library.
 This command is used to release the cam coupling relationship between the specified slave axis and its

corresponding spindle.
 Release the slave axis cam coupling relationship at the rising edge of Execute.
 After the cam relationship is disconnected, the slave axis may not necessarily stop. If the speed of the slave

shaft is not 0 before executing the command, then after the command DONE signal is completed, the cam
coupling relationship is disconnected, but the slave axis still operates at the speed before cutting out.

 If the command is executed without a cam coupling relationship for the slave axis, an ERROR error will
occur.

206

3-3-2-4. CAM action start [MC_GearIn]

(1) Instruction overview

Set the gear ratio of the master and slave axes and activate the electronic gears.

Instruction Name Graphical representation ST language

MC_GearIn cam action start

(2) Related variables

VAR_IN_OUT
Name Data type

Effective
range

Initial
value

Description

Master master axis AXIS_REF - - map to master axis
Slave slave axis AXIS_REF - - map to slave axis

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Execute valid BOOL TRUE/FALSE FALSE
Rising edge signal, execute current
command

RatioNumerator
numerator of
gear ratio

DINT
positive
number

1 offset on the master table

RatioDenominator
denominator
of gear ratio

UDINT
positive
number

1 offset on the slave table

Acceleration
target

acceleration
LREAL

positive
number 0 acceleration [u/s2]

Deceleration
target

deceleration
LREAL

positive
number

0 deceleration [u/s2]

Jerk
target jerk
speed

LREAL
positive
number

0 jerk speed [u/s3]

BufferMode buffer mode
MC_BUFFER_

MODE
- - -

VAR_OUTPUT Name Data type
Effective
range

Initial
value

Description

InGear
gear ratio
reached

BOOL TRUE/FALSE FALSE
The slave station moves at the given
master station speed ratio, and the
Target speed reached by the slave

207

VAR_IN_OUT
Name Data type

Effective
range

Initial
value

Description

axis is TRUE

Busy executing BOOL TRUE/FALSE FALSE
True when the execution of the
function block has not yet ended

Active in control BOOL TRUE/FALSE FALSE Change to TRUE in control

CommandAborted
instruction
interrupted

BOOL TRUE/FALSE FALSEModule execution interrupted is true

Error error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID error code SMC_ERROR - 0 Error recognition

(3) Function description

 Start the cam action at the rising edge of Execute
 To decouple after executing the electronic gear, the GearOut command must be used.
 This command is a speed electronic gear function, and the loss of synchronization distance caused during

the acceleration process will not be automatically compensated.
 When the Busy signal is TRUE during command execution, repeatedly triggering the rising edge of

Execute will not restart the command regardless of whether the target speed of the slave axis has been
reached.

 When reaching the target speed, InGear is TRUE, and at this time, the slave axis movement quantity=the
spindle movement quantity * RatioNumerator/RatioDenominator.

 If the spindle speed changes in real time, please use this command with caution.

Note: Do not use MC_SetPosition during instruction execution to prevent accidents caused by rapid motor
operation.

3-3-2-5. Position specified gear action [MC_GearInPos]

(1) Instruction overview

Set the electronic gear ratio between the main axis and the slave axis for electronic gear action.
Specify the spindle position and slave axis position of starting synchronization, and the starting synchronization
distance of the spindle, and use this to complete the action of entering the electronic gear.

Instruction Name Graphical representation ST language

208

MC_GearInPos
position specified

gear action

(2) Related variables

VAR_IN_OUT
Name Data type Effective range

Initial
value

Description

Master master axis AXIS_REF - - map to master axis
Slave slave axis AXIS_REF - - map to slave axis

VAR_INPUT Name Data type Effective range
Initial
value

Description

Execute valid BOOL TRUE/FALSE FALSE
Rising edge signal, execute current
command

RatioNumerator
numerator of
gear ratio

DINT positive number 1 master axis offset

RatioDenominator
denominator of

gear ratio
UDINT positive number 1 slave axis offset

MasterSyncPosition
Spindle

synchronization
position

LREAL
Negative number,

0, positive
number

0
Main position for axis synchronous
operation

SlaveSyncPosition
slave axis

synchronization
position

LREAL
Negative number,

0, positive
number

0
Slave position for axis synchronous
operation

MasterStartDistance
Execute

synchronous
spindle position

LREAL
Negative number,

0, positive
number

0
The main distance of the gears in
the program (start the slave axis to
enter synchronization)

BufferMode buffer mode
MC_BUFFER_

MODE
- - -

VAR_INPUT Name Data type Effective range
Initial
value

Description

AvoidReversal
Prohibit reverse

run
BOOL TRUE/FALSE FALSE

FALSE: Indicates that slave axis
reversal is physically possible and
acceptable.
TRUE: Indicates that slave axis
reversal is physically impossible,

209

Otherwise, it may cause danger. It
is only applicable to modular
driven axis. If reverse rotation
cannot be avoided, the axis will
stop due to an error

VAR_OUTPUT Name Data type Effective range
Initial
value

Description

StartSync
Start

synchronization
BOOL TRUE/FALSE FALSE

If the electronic gear starts
processing, it is true

InSync
Arrival

synchronization
BOOL TRUE/FALSE FALSE

Electronic gear command
completed

Busy Executing BOOL TRUE/FALSE FALSE
True when the execution of the
function block has not yet ended

Active In control BOOL TRUE/FALSE FALSE Change to TRUE in control

CommandAborted
Instruction
interrupted

BOOL TRUE/FALSE FALSE
Module execution interrupted is
TRUE

Error Error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID Error code SMC_ERROR - 0 Error recognition

(3) Function description

 This instruction is implemented by the "SM3_Basic" library.
 After starting the action, the slave axis target speed is the speed obtained by multiplying the spindle speed

by the gear ratio, and the acceleration and deceleration actions are carried out.
 The process from the start of synchronization to the end of synchronization in this function block is

essentially an electronic cam that slave axis follows the spindle within the synchronization interval. At this
time, based on the spindle range (MasterSyncPosition-MasterStartDistance, MasterSyncPosition) and the
slave axis range (current position, SlaveSyncPosition), the command will automatically design a cam curve
based on the set gear ratio and the above three parameters, When performing synchronization, slave axis
will follow the spindle to complete the cam movement.

 If the master-slave axis operates in linear mode, it is necessary to ensure that the above parameters are set
reasonably, otherwise the gear action cannot be carried out correctly. Therefore, it is recommended to use
this command when the master-slave axis is in modulus axis mode. For example, both the master and slave
axis linear working modes move in a forward direction, if the master axis position
MasterSyncPosition-MasterStartDistance or the slave axis position>SlaveSyncPosition, the electronic gear
action cannot be cut in.

 At the same time as synchronization is completed (InSync is true), the target speed is reached, and then the
slave axis movement quantity=the spindle movement quantity RatioNumerator/RatioDenominator

 For AvoidReversal: If the slave axis is a modal axis and the spindle speed (the multiple relationship of gear
ratio) is not relative to the velocity relationship of the slave axis, then MC_GearInPos will try to avoid
reversing of the slave axis. It attempts to "stretch" the motion of the slave axis by adding 5 slave axis
cycles. If this stretching is invalid, an error will occur and slave axis will error stop. If the slave axis speed
is associated with the spindle speed (which is a multiple of the gear ratio), an error will occur and the axis
will error stop. If the slave axis is a linear axis mode axis, an error will occur at the rising edge of Execute.

(4) Application

Example 1: Set the electronic gear ratio between the main axis and the slave axis to perform electronic gear

210

action. Specify the spindle position and slave axis position to start synchronization, and the starting
synchronization distance of the spindle, and use this to complete the action of entering the electronic gear.
Select the virtual axis for the main axis, select the Ethercat real axis from the slave axis, set the main axis speed
to 5u/s, and the direction is positive.
(1) Programming: The starting positions of both axes are set to 0, the spindle is set to a speed of 5 u/s using the
function block "MC_MoveVelocity", and the direction is positive. The electronic gear ratio of the two axes is
set to 1:1 using "MC_GearInPos", the spindle synchronization position is 100u, the slave axis synchronization
position is 50u, and the spindle starting synchronization distance is 40u.

(2) You can use 'Trace' to view the current status. As can be seen from the cursor, synchronization starts at 60u
for the spindle position. After synchronization is completed, the spindle position is at 100u, the slave axis
position is at 50u, and the slave axis speed is at 5u/s.

211

3-3-2-6. Gear action release [MC_GearOut]

(1) Instruction overview

Disconnect the electronic gear coupling between the slave axis and spindle.
Instruction Name Graphical representation ST language

MC_GearOut
gear action
release

(2) Related variables

VAR_IN_OU
T

Name Data type
Effective
range

Initial
value

Description

Slave slave axis AXIS_REF - - map to the axis

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Execute valid BOOL TRUE/FALSE FALSE Rising edge signal, execute current command
VAR_OUTP

UT
Name Data type

Effective
range

Initial
value

Description

Done completed BOOL TRUE/FALSE FALSE
If the coupling between the slave axis and the
spindle electronic gear is disconnected, it is
true

Busy executing BOOL TRUE/FALSE FALSE
True when the execution of the function block
has not yet ended

Error error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID error code SMC_ERROR - 0 Error recognition

(3) Function description

 This instruction is implemented by the "SM3_Basic" library.
 After cutting out the electronic gear, the speed from the slave axis is the speed before cutting out, so it is

necessary to cooperate with MC_Stop command stops the slave axis.
 Specify the action object axis through Slave, specify Deceleration, and abort the executing command

MC_GearIn (gear action start), MC_ GearInPos (position specified gear action) command.
 This instruction has no effect for the master axis action of command MC_GearIn and MC_GearInPos.

212

3-3-2-7. Master slave axis phase offset [MC_Phasing]

(1) Instruction overview

Specify the phase deviation between the master and slave axes.
Instruction Name Graphical representation ST language

MC_Phasing
master slave axis
phase offset

(2) Related variables

VAR_IN_OUT Name Data type
Effective
range

Initial
value

Description

Master master axis AXIS_REF - - map to master axis
Slave slave axis AXIS_REF - - map to the axis

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Execute valid BOOL TRUE/FALSE FALSE
Rising edge signal, execute current
command

PhaseShift
Phase

compensation
LREAL

Negative
number, 0,
positive
number

0
Specify the phase compensation amount for
the spindle

Velocity speed LREAL
0, positive
number

0
Maximum speed value when performing
phase shift [command unit/s]

Acceleration acceleration LREAL
0, positive
number

0
Maximum acceleration during phase shift
execution [command unit /s2]

Deceleration deceleration LREAL
0, positive
number

0
Maximum deceleration during phase shift
execution [command unit /s2]

Jerk jerk speed LREAL
0, positive
number

0
Maximum jerk speed during phase shift
execution [command unit /s3]

VAR_OUTPUT Name Data type
Effective
range

Initial
value

Description

Done completed BOOL TRUE/FALSE FALSE
If the electronic gear coupling between the
slave axis and the spindle is disconnected, it
is true

Busy executing BOOL TRUE/FALSE FALSE
True when the execution of the function
block has not yet ended

213

CommandAborted
instruction
interrupted

BOOL TRUE/FALSE FALSEModule execution interrupted is true

Error error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID error code SMC_ERROR - 0 Error recognition

(3) Function description

 Perform phase shift at the rising edge of Execute, slave axis automatically calculates a smooth curve to
complete the phase shift from the slave axis to the main axis. The phase difference between the main and
slave axes is the PhaseShift value of the input signal, and a positive value is the lag of the slave axis to the
main axis.

 After completing the offset, the Done signal output is true.
 Compensate for the phase difference between the master and slave axes based on the set PhaseShift,

Velocity, Acceleration, and Deceleration.
 When the phase difference between the master and slave axes reaches PhaseShift, the Done signal is

output.
 When executing the command, the spindle command position and feedback position remain unchanged,

and the slave axis is adjusted. After completion, the phase difference between the slave axis and the spindle
is PhaseShift. The final result of this command is the phase offset between the given values of the axis, so
the actual feedback value of the real axis may not be consistent with the final offset.

3-3-2-8. CAM range [SMC_CAMBounds]

(1) Instruction overview

When the slave axis is coupled with the spindle cam, the maximum position, speed, and acceleration of the
slave axis can be calculated using this function block.
The spindle moves under maximum input speed and acceleration/deceleration restrictions. This command can
check whether the curve is correct when designing the cam table, provided that the maximum acceleration,
deceleration, speed, etc. of the spindle are known.

Instruction Name Graphical representation ST language

SMC_CAMBounds CAM range

(2) Related variables

214

VAR_IN_OUT
Name Data type

Effective
range

Initial
value

Description

Cam CAM MC_CAM_REF - - map to the cam

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

bExecute valid BOOL TRUE/FALSE FALSE
Rising edge signal, execute current
command

dMasterVelMax max speed LREAL - 1 Maximum spindle speed in absolute mode

dMasterAccMax
max

acceleration
LREAL - 0

Maximum spindle acceleration in absolute
mode

dMasterScaling Scale Factor LREAL - 1 Scale factor for spindle cam application
dSlaveScaling Scale Factor LREAL - 1 Scale factor for slave cam application

VAR_OUTPUT Name Data type
Effective
range

Initial
value

Description

bDone Completed BOOL TRUE/FALSE FALSE
If the coupling between the slave axis and
the spindle electronic gear is disconnected,
it is true

bBusy Executing BOOL TRUE/FALSE FALSE
True when the execution of the function
block has not yet ended

bError Error BOOL TRUE/FALSE FALSE Function block execution error
nErrorID Error code SMC_ERROR - 0 Error recognition

dMaxPos Max position LREAL - 0
Calculate the maximum position of the
slave axis based on the cam table

dMinPos Min position LREAL - 0
Calculate the minimum position of the slave
axis based on the cam table

dMaxVel Max speed LREAL - 0
Calculate the maximum speed of the slave
axis

dMinVel Min speed LREAL - 0
Calculate the minimum speed of the slave
axis

dMaxAccDec
Max

acceleration
LREAL - 0

Calculate the maximum acceleration of the
slave axis

dMinAccDec
Min

acceleration
LREAL - 0

Calculate the minimum acceleration of the
slave axis

(3) Function description

 Based on the rising edge of bExecute, the "dMasterVelMax", "dMasterAccMax", "dMasterScaling", and
"dSlaveScaling" values of the input variables are integrated with the cam table data to calculate the
equivalent value of the "maximum position" and "minimum position" of the slave axis. For example, if the
spindle cycle is 360 and the cam table is a straight line with a slope of 2, the calculated result is shown in
the following figure:

215

 The spindle can be calculated using this command when running in absolute mode or when the spindle is
set to cycle mode, and the modulus is set to spindle cycle.

 The cam table is XYVA (valid in polynomial mode), and one-dimensional arrays, two-dimensional arrays,
etc. are invalid.

(4) Application

Example: Establish an electronic cam table, and calculate the maximum position, speed,
acceleration/deceleration of the slave axis through "SMC_CAMBounds" after coupling the slave axis and the
spindle cam. Select the virtual axis for the main axis and the Ethercat real axis for the slave axis.

Program:

Right click on "Application" in the project device bar, select "Add Object" - "Cam Table", name it Cam,
and open it to add the corresponding cam table parameters as shown in the following figure.

Select the cam table by instruction MC_CamTableSelect, select the coupling mode as absolute, and configure
the electronic cam module MC_CamIn. Set the spindle running speed to 5 and acceleration to 100 using
"MC-MoveVelocity", and calculate the maximum position, speed, and acceleration of the slave station using
"SMC_CAMBounds". The master station runs synchronously with the master slave bounding, and sets the slave
axis running mode to modulus - running between 0 and 360.

216

By monitoring the position and speed of the slave axis through "Trace", it can be seen that the maximum
position and speed matched during operation.

217

218

3-3-2-9. CAM position range [SMC_CAMBounds_Pos]

(1) Instruction overview

When the slave axis is coupled with the spindle cam, the maximum and minimum positions of the slave axis can
be calculated using this function block. Compare to SMC_CAMBounds, this function block lacks calculations
such as maximum acceleration, and all other work is consistent.

Instruction Name Graphical representation ST language

SMC_CAMBounds_Pos
CAM position

range

(2) Related variables

VAR_IN_OUT Name Data type
Effective
range

Initial
value

Description

Cam CAM MC_CAM_REF - - map to the cam

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

bExecute Valid BOOL TRUE/FALSE FALSE
Rising edge signal, execute current
command

dMasterVelMax Max speed LREAL - 1 Maximum spindle speed in absolute mode

dMasterAccMax
Max

acceleration
LREAL - 0

Maximum spindle acceleration in absolute
mode

dMasterScaling Scale Factor LREAL - 1 Scale factor for spindle cam application
dSlaveScaling Scale Factor LREAL - 1 Scale factor for slave axis cam application

VAR_OUTPUT Name Data type
Effective
range

Initial
value

Description

bDone Completed BOOL TRUE/FALSE FALSE
If the coupling between the slave axis and
the spindle electronic gear is disconnected,
it is true

bBusy Executing BOOL TRUE/FALSE FALSE
True when the execution of the function
block has not yet ended

bError Error BOOL TRUE/FALSE FALSE Function block execution error
nErrorID Error code SMC_ERROR - 0 Error recognition

dMaxPos Max position LREAL - 0
Calculate the maximum position of the slave
axis based on the cam table

dMinPos Min position LREAL - 0
Calculate the minimum position of the slave
axis based on the cam table

(3) Function description

219

 Based on the rising edge of bExecute, the "dMasterVelMax", "dMasterAccMax", "dMasterScaling", and
"dSlaveScaling" values of the input variables are combined with the cam table data to calculate the
"maximum position" and "minimum position" of the slave axis.

 The spindle can be calculated using this command when running in absolute mode or when the spindle is
set to cycle mode, and the modulus is set to spindle cycle.

 The cam table is XYVA (valid in polynomial mode), and one-dimensional arrays, two-dimensional arrays,
etc. are invalid.

220

3-3-2-10. Display cam table in visualization [SMC_CamEditor]

(1) Instruction overview

This function block is used to display cam table in visualization. This feature block does not work without
TargetVideo or WebVideo.

Instruction Name Graphical representation ST language

SMC_CamEditor
display cam table in

visualization

(2) Related variables

VAR_IN_OUT
Name Data type Effective range

Initial
value

Description

Cam CAM MC_CAM_REF - - map to the cam

VAR_INPUT Name Data type Effective range
Initial
value

Description

bEnable valid BOOL TRUE/FALSE FALSE Modify the cam table when it is true
VAR_OUTPU

T
Name Data type Effective range

Initial
value

Description

bCAMchanged Completed BOOL TRUE/FALSE FALSE
The cam in the visualization has
changed. Then it is true

bError Error BOOL TRUE/FALSE FALSE Function block execution error
nErrorID Error code SMC_ERROR - 0 Error recognition

221

3-3-2-11. CAM tappet control [SMC_CamRegister]

(1) Instruction overview

Implement cam tappet control (cam switch). When editing the cam, it is possible not to edit the curves of the
master and slave axes, and simply configure the tappet table to achieve tappet control through this function
block.

Instruction Name Graphical representation ST language

SMC_CamRegister
CAM tappet
control

(2) Related variables

VAR_IN_OUT
Name Data type

Effective
range

Initial
value

Description

Master Master axis AXIS_REF - - map to the master axis

CamTable CAM table MC_CAM_REF - -
Mapping to an electronic cam, i.e. an
electronic cam instance

bTappet Tappet output

ARRAY
[1..MAX_NUM_T

APPETS]OF
BOOL

- - tappet point output

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Enable Executing BOOL TRUE/FALSE FALSE Execute current instruction is TRUE

MasterOffset
master axis
position

LREAL - 0 Offset on main table

MasterScaling
master axis

scale
LREAL - 1 Scale factor of the main configuration file

TappetHysteresis
tappet

hysteresis
LREAL - - tappet hysteresis size

DeadTimeCompen
sation

Dead time
compensation

LREAL - 0
Deadband time compensation in seconds.
The expected spindle position will be
calculated using linear extrapolation method

VAR_OUTPUT Name Data type
Effective
range

Initial
value

Description

Busy Executing BOOL TRUE/FALSE FALSE
True when the execution of the function
block has not yet ended

Error Error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID Error code SMC_ERROR - 0 Error recognition

222

VAR_IN_OUT
Name Data type

Effective
range

Initial
value

Description

EndOfProfile
Curve cycle
completion

BOOL TRUE/FALSE FALSE
True if the spindle position is greater than or
equal to the set cycle

(3) Function description

 Enable signal is TRUE, and if there is no error output, Busy output is TRUE to execute tappet control.
 The control function block is not related to the slave axis in the electronic cam, only the spindle cycle and

tappet table need to be configured.
 bTappet is a one-dimensional Boolean structure (MAX_NUM_TAPPETS=512), and bTappet[i]

corresponds to ith tappet output DeadTimeCompensation, the unit is second. When set to a positive value,
it is ahead the tappet signal, and when set to a negative value, it is behind the tappet signal.

(4) Application

Example: Set 3 tappets in the tappet table in the cam table. Set the spindle speed to 5 and the acceleration to
100, and run the spindle through the trajectory set in the cam table. The main axis is selected as the virtual axis,
and the slave axis is selected as the real axis.
Programming
Right click on "Application" in the project device bar, select "Add Object" - "Cam Table", name it Cam, and
open it to add the corresponding tappet parameters as shown in the following figure.

Add enabling module MC_ Power in the main program, spindle running speed module MC_MoveVelocity. By
using the function block "SMC_CamRegister", the output status of all IDs in the tappet table can be monitored.

223

You can see all the current tappet output states of the spindle in 'Trace'.

224

3-3-2-12. Get cam slave axis position [SMC_GetCamSlaveSetPosition]

(1) Instruction overview

Read the cam table slave axis position, speed, and acceleration information.
Instruction Name Graphical representation ST language

SMC_GetCamSlaveSet
Position

obtain the
cam slave

axis
position

(2) Related variables

VAR_IN_OUT
Name Data type

Effective
range

Initial
value

Description

Master master axis AXIS_REF - - map to the master axis
Slave slave axis AXIS_REF - - map to the slave axis

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

Execute valid BOOL TRUE/FALSE FALSE
execute current command at the rising
edge signal

MasterOffset
master axis

offset
LREAL - 0 master table offset

SlaveOffset
slave axis
offset

LREAL - 0 slave table offset

MasterScaling master scale LREAL - 1 Scale factor of the main configuration file
SlaveScaling slave axis LREAL - 1 Scale factor of the slave configuration file

CamTableID cam table MC_CAM_ID - -
define the using of cam, use together with
MC_CamTable
Select output point CamTableI

VAR_OUTPUT Name Data type
Effective
range

Initial
value

Description

fStartPosition
slave axis
position

LREAL - 0
The position of the slave axis obtained
from the cam table and the current spindle
information

fStartVelocity
slave axis
speed

LREAL - 0
The slave axis speed obtained from the
cam table and the current spindle
information

fStartAcceleration
slave

acceleration
LREAL - 0

The slave axis acceleration obtained from
the cam table and the current spindle
information

Busy executing BOOL TRUE/FALSE FALSE True when the execution of the function

225

VAR_IN_OUT
Name Data type

Effective
range

Initial
value

Description

block has not yet ended
Error error BOOL TRUE/FALSE FALSE Function block execution error
ErrorID error code SMC_ERROR - 0 Error recognition

(3) Function description

 The output value calculated by this instruction is: Y= (cam((Cam starting spindle lookup position
+Masteroffset)* MasterScaling)+slaveoffset)* SlaveScaling, Cam is a function of the cam table. For
example, if the starting spindle position of the cam is 0, the master-slave axis is scaled to 1, the
Masteroffset is 100, and the slaveoffset is 0, the function block outputs the position of the slave axis
corresponding to the cam table at 100.

 This function block only requires the successful construction of the cam table to read the position of the
slave axis, and there is no requirement for the operation of the master slave axis.

226

3-3-2-13. Obtain tappet output value [SMC_GetTappetValue]

(1) Instruction overview

To read the current tappet status, it is necessary to use with MC_CamIn command.
Instruction Name Graphical representation ST language

SMC_GetTappetValue
Obtain the tappet
output value

(2) Related variables

VAR_IN_OUT
Name Data type

Effective
range

Initial
value

Description

Tappet tappet SMC_Tappet Data - - map to a tappet

VAR_INPUT Name Data type
Effective
range

Initial
value

Description

iID tappet ID INT
positive value,

0
0 tappet ID

bInitValue
initial
value

BOOL TRUE/FALSE FALSE
The initial value of the tappet to be
allocated on the first call

bSetInitValueAtReset
tappet
reset

BOOL TRUE/FALSE FALSE

If it is true, the output value of the
tappet will be set to the initial value
when the CamIn function block
restarts.
If it is FALSE, the value of the tappet
will be maintained when the CamIn
function block is restarted

VAR_OUTPUT Name Data type
Effective
range

Initial
value

Description

bTappet
tappet
value

BOOL TRUE/FALSE FALSE tappet value

(3) Function description

 This function block needs to use together with MC_CamIn.

227

3-3-2-14. Read the cam table [SMC_ReadCAM]

(1) Instruction overview

Instruction Name Graphical representation ST language

SMC_ReadCAM
read the cam

table

(2) Related variables

VAR_INPUT
Name Data type

Effective
range

Initial
value

Description

bExecute execute BOOL TRUE/FALSE FALSE execute the function block at the rising edge

sFileName file name STRING(255) - -
The name of the file, which contains a cam
description that defines ASCII format

VAR_OUTP
UT

Name Data type
Effective
range

Initial
value

Description

bDone completed BOOL TRUE/FALSE FALSE True if Cam has been read in

bBusy executing BOOL TRUE/FALSE FALSE
True when the execution of the function block
has not yet ended

bError error BOOL TRUE/FALSE FALSE Function block execution error
nErrorID error code SMC_ERROR - 0 Error recognition

CAM - MC_CAM_REF
STRUCT(nEle
ments : = 0,

nTappets : = 0)
- -

(3) Function description

 This function block is designed for loading cams during runtime, and make it available for modules
MC_CamTableSelect and MC_CamIn. The cam to be loaded must be created before the cam editor, and
saved in “*.CAM” file (refer to SMC_WriteCAM).

 This function block needs to use together with MC_CamIn.
 The size of the loadable cam is limited by the global constant gc_SMC_FILE_MAXCAMEL (Number of

Elements) and gc_SMC_FILE_ MAXCAMTAP (number of cam switch actions).

228

3-3-2-15. Modify the cam table [SMC_WriteCAM]

(1) Instruction overview

Used to store the cam table created in the cam editor in a file at runtime.
Instruction Name Graphical representation ST language

SMC_WriteCAM
modify the
cam table

(2) Related variables

VAR_IN_OUT Name Data type Effective range
Initial
value

Description

CAM cam MC_CAM_REF - - map to the cam

VAR_INPUT Name Data type Effective range
Initial
value

Description

bExecute execute BOOL TRUE/FALSE FALSE
execute the function block at the rising
edge

sFileName file name STRING(255)
The name of the file, which contains the
defined cam description in ASCII format

VAR_OUTPUT Name Data type Effective range
Initial
value

Description

bDone completed BOOL TRUE/FALSE FALSE True if the cam is written into the file

bBusy executing BOOL TRUE/FALSE FALSE
True when the execution of the function
block has not yet ended

bError error BOOL TRUE/FALSE FALSE Function block execution error
nErrorID error code SMC_ERROR - 0 Error recognition

(3) Function description

 Store the CAM information connected with “CAM” in the file “sFileName” at the rising edge of bExecut.
 Successfully stored and completed bDone signal output is true.
 The stored cam table information is limited by hardware memory.
 Attention: This function can be executed during program operation, and cam table information can also be

manually stored in offline information.

229

3-3-3. CAM function application

Example 1: Using an electronic cam to achieve spindle running speed mode, with a speed of 15 Plus/S, an
acceleration of 100 Plus/S2, and a positive direction. The slave station runs according to the cam table.
Program operation:

(1) Right click on "Application" in the engineering equipment bar, select "Add Object" - "Cam Table",
name it Cam, and open it to add the corresponding cam table parameters as shown in the following
figure.

(2) Add the enable module MC_Power, spindle running speed module MC_MoveVelocity in the main
program POU_1, calling the cam table module MC_CamTableSelect, configured the electronic cam
module MC_CamIn and unbinding electronic cam module MC_CamOut.

230

Note: If the slave axis is in motion during CAMOUT execution, and after the command is executed, the slave
axis will continue to run at its original speed, stop the instruction through MC_Stop, MC_Halt.

Example 2: Using electronic gears to achieve spindle running speed mode, with a speed of 15 Plus/S, an
acceleration of 100 Plus/S2, and a positive direction. The slave station moves according to the electronic gear
ratio of 2. So at this point, the speed of the slave station is 30 Plus/S.

231

232

Appendix
Error
code Reasons Description

0 SMC_NO_ERROR no error

1 SMC_DI_GENERAL_COMMUNICATION_ERROR Communication error. The fieldbus slave
station is no longer operational

2 SMC_DI_AXIS_ERROR axis error
3 SMC_DI_FIELDBUS_LOST_SYNCRONICITY Loss of synchronization of fieldbus

10 SMC_DI_SWLIMITS_EXCEEDED The position exceeds the SWLimit setting
range

11 SMC_DI_HWLIMITS_EXCEEDED Abnormal hardware position limit
12 SMC_DI_LINEAR_AXIS_OUTOFRANGE Linear axis incremental position overflow
13 SMC_DI_HALT_OR_QUICKSTOP_NOT_SUPPORTED Drive status Halt or Quickstop not supported
14 SMC_DI_VOLTAGE_DISABLED Drive does not have power
15 SMC_DI_IRREGULAR_ACTPOSITION This error is no longer used
16 SMC_DI_POSITIONLAGERROR Excessive position error
17 SMC_DI_HOMING_ERROR homing error
18 SMC_DI_LICENSING_ERROR License issues

20 SMC_REGULATOR_OR_START_NOT_SET Axis status cannot execute motion control
commands

21 SMC_WRONG_CONTROLLER_MODE Axis in incorrect controller mode
25 SMC_INVALID_ACTION_FOR_LOGICAL Invalid logical axis action

30 SMC_FB_WASNT_CALLED_DURING_MOTION The motion command is running and cannot
be interrupted

31 SMC_AXIS_IS_NO_AXISS_REF AXIS_REF variable type error

32 SMC_AXIS_REF_CHANGED_DURING_OPERATION AXIS_REF variable has been swapped while
the module is active

33 SMC_FB_ACTIVE_AXIS_DISABLED Axis disabled during movement.
MC_Power.bRegulatorOn

34 SMC_AXIS_NOT_READY_FOR_MOTION

Axis is unable to execute motion commands
in its current state because Axis has not
issued a signal indicating that it is following
the target value

35 SMC_AXIS_ERROR_DURING_MOTION Drive encountered an error while running
40 SMC_VD_MAX_VELOCITY_EXCEEDED Over the max speed fMaxVelocity
41 SMC_VD_MAX_ACCERATION_EXCEEDED Over the max acceleration fMaxAcceleration
42 SMC_VD_MAX_DEDRATION_EXCEEDED Over the max deceleration fMaxDeceleration
50 SMC_3SH_INVALID_VELACC_VALUES Invalid speed or acceleration value

51 SMC_3SH_MODE_NEEDS_HWLIMIT Mode request using terminal switches for
security reasons

67 SMC_MAC_TOO_MANY_TASK There are too many tasks to generate axes
using SDO

68 SMC_MAC_ATOMIC_ADD_FAILED Atomic addition failed

69 SMC_SDO_INVALID_DATALENGTH SDO reading resulted in invalid data length
(>4)

70 SMC_SCM_NOT_SUPPORTED not supported mode

71 SMC_SCM_AXIS_IN_Error_STATE In the current mode, the controller mode
cannot be changed

72 SMC_SCM_INTERRUPTED SMC_SetControllerMode is interrupted by
MC_Stop or errorstop

75 SMC_ST_WRONG_CONTROLLER_MODE
The axis is not in the correct controller
mode. Abandoned and no longer returned by
SMC_ SetTorque

80 SMC_RAG_ERROR_DURRING_STARTUP axis group startup error
81 SMC_RAG_ERROR_AXIS_NOT_INITIALIZED The axis has not reached the target state yet
85 SMC_PP_WRONG_AXIS_TYPE Function block does not support virtual or

233

Error
code Reasons Description

logical axes

86 SMC_PP_NUMBER_OF_ABSOLUTE_BITS_INVALID The absolute number of digits is invalid and
must be within the range of 8~32

90 SMC_CGR_ZERO_VALUES invalid value

91 SMC_CGR_DRIVE_POWERED As long as the drive is in control mode, the
transmission parameters must not be changed

92 SMC_CGR_INVALID_POSPERIOD modulus cycle invalid (<=0 or >half of the
bus bandwidth)

93 SMC_CGR_POSPERIOD_NOT_INTEGRAL
The modulus period expressed in increments
is not an integer, but the modulus is
processed by driver

110 SMC_P_FTASKCYCLE_EMPTY Axis does not contain information about
cycle time (fTaskCycle=0)

120 SMC_R_NO_ERROR_TO_RESET Error free axis
121 SMC_R_DRIVE_DOESNT_ANSWER Axis does not execute error reset
122 SMC_R_ERROR_NOT_RESETABLE Unable to reset error
123 SMC_R_DRIVE_DOESNT_ANSWER_IN_TIME Communication with axis is not working

124 SMC_R_CANNOT_RESET_COMMUNICATION_ERR
OR

If there is a communication error, it cannot
be reset

130 SMC_RP_PARAM_UNKNOWN Unknown parameter number

131 SMC_RP_REQUESTING_ERROR
Error transferring to drive. Please refer to the
error number in the function block instance
ReadDriveParameter

132 SMC_RP_DRIVE_PARAMETER_NOT_MAPPED No available drive parameter assignments

133 SMC_RP_PARAM_CONVERSION_ERROR
Failed to convert value to drive
parameter/from drive parameter to value.
Unknown soft motion parameters

140 SMC_WP_PARAM_INVALID Parameter number unknown or not allowed
to be written

141 SMC_WP_SENDING_ERROR Please refer to the error number in the
function block instance WriteDriveParameter

142 SMC_WP_DRIVE_PARAMETER_NOT_MAPPED No available drive parameter assignments

143 SMC_WP_PARAM_CONVERSION_ERROR
Failed to convert value to drive
parameter/from drive parameter to value.
Unknown soft motion parameters

170 SMC_H_AXIS_WASNT_STANDSTILL The axis is not in a stationary state
171 SMC_H_AXIS_DIDNT_START_HOMING Drive not started homing

172 SMC_H_AXIS_DIDNT_ANSWER Drive not responding when homing is
completed

173 SMC_H_ERROR_WHEN_STOPPING Error stopping after reset. No need to set
deceleration

174 SMC_H_AXIS_IN_ERRORSTOP The drive is in an error stopped state. Unable
to perform homing.

180 SMC_MS_UNKNOWN_STOPPING_ERROR Unknown error while stopping
181 SMC_MS_INVALID_ACCDEC_VALUES Invalid speed or acceleration value
182 SMC_MS_DIRECTION_NOT_APPLICABLE Direction=shortest not applicable

183 SMC_MS_AXIS_IN_ERRORSTOP The drive is in an error stopped state. Unable
to execute stop

184 SMC_BLOCKING_MC_STOP_WASNT_CALLED

Not call through Execute=TRUE to block
axis instance MC_Stop. Must call MC_Stop
(Execute=FALSE)

185 SMC_MS_AXIS_ALREADY_STOPPING Unable to interrupt ongoing MC_ Stop

200 SMC_UNKNOWN_TASK_INTERVAL Unable to determine task interval for bus
task

201 SMC_MA_INVALID_VELACC_VALUES Invalid speed or acceleration value
202 SMC_MA_INVALID_DIRECTION Direction error

234

Error
code Reasons Description

226 SMC_MR_INVALID_VELACC_VALUES Invalid speed or acceleration value
227 SMC_MR_INVALID_DIRECTION Direction error
251 SMC_MAD_INVALID_VELACC_VALUES Invalid speed or acceleration value
252 SMC_MAD_INVALID_DIRECTION Direction error
276 SMC_MSI_INVALID_VELACC_VALUES Invalid speed or acceleration value
277 SMC_MSI_INVALID_DIRECTION Direction error

278 SMC_MSI_INVALID_EXECUTION_ORDER Except interruption, do not call main mvtFB
after SMC_MoveSupplicated

300 SMC_LOGICAL_NO_REAL_AXIS No longer in use, for compatibility only
301 SMC_MV_INVALID_ACCDEC_VALUES Invalid speed or acceleration value
302 SMC_MV_DIRECTION_NOT_APPLICABLE Direction=shortest/fastest not applicable
325 SMC_PP_ARRAYSIZE Wrong array size
326 SMC_PP_STEP0MS Step time =t#0s
350 SMC_VP_ARRAYSIZE Wrong array size
351 SMC_VP_STEP0MS Step time =t#0s
375 SMC_AP_ARRAYSIZE Wrong array size
376 SMC_AP_STEP0MS Step time =t#0s
400 SMC_TP_TRIGGEROCCUPIED Trigger activated
401 SMC_TP_COULDNT_SET_WINDOW DriveInterface not support window function
402 SMC_TP_COMM_ERROR Communication error
410 SMC_AT_TRIGGERNOTOCCUPIED Trigger unassigned
426 SMC_MCR_INVALID_VELACC_VALUES Invalid speed or acceleration value
427 SMC_MCR_INVALID_DIRECTION Invalid direction
451 SMC_MCA_INVALID_VELACC_VALUES Invalid speed or acceleration value
452 SMC_MCA_INVALID_DIRECTION Invalid direction
453 SMC_MCA_DIRECTION_NOT_APPLICABLE Direction=fastest, not applicable

475 SMC_SDL_INVALID_AXIS_STATE SMC_ChangeDynamicLimits can only be
called in a static state. or power_off

476 SMC_SDL_INVALID_VELACC_VALUES Invalid speed, acceleration, deceleration, or
jerk

600 SMC_CR_NO_TAPPETS_IN_CAM Cam not set tappet point

601 SMC_CR_TOO_MANY_TAPPETS tappets ID exceeded
MAX_NUM_TAPPETS

602 SMC_CR_MORE_THAN_32_ACCESSES a CAM_REF over 32 access times
625 SMC_CI_NO_CAM_SELECTED not select cam
626 SMC_CI_MASTER_OUT_OF_SCALE Spindle out of valid range

627 SMC_CI_RAMPIN_NEEDS_VELACC_VALUES Must be ramp_ Must specify the velocity and
acceleration values for ramp_in function

628 SMC_CI_SCALING_INCORRECT Scale the variable
fEditor/TableMasterMin/Max incorrect

629 SMC_CI_TOO_MANY_TAPPETS_PER_CYCLE Too many tappets are active in one cycle

640 SMC_CB_NOT_IMPLEMENTED Function block of given cam format is not
implemented

675 SMC_GI_RATIO_DENOM RatioDenominator = 0
676 SMC_GI_INVALID_ACC Invalid acceleration
677 SMC_GI_INVALID_DEC Invalid deceleration

678 SMC_GI_MASTER_REGULATOR_CHANGED
The status of the main device
'enabled/disabled' has been changed without
permission

679 SMC_GI_INVALID_JECK Jerk invalid

725 SMC_PH_INVALID_VELACCDEC Invalid speed and acceleration/deceleration
values

726 SMC_PH_ROTARYAXIS_PERIOD0 fPositionPeriod=0 modulus axis
750 SMC_NO_CAM_REF_TYPE The given cam type is not MC_CAM_REF

751 SMC_CAM_TABLE_DOES_NOT_COVER_MASTER_S
CALE

The curve data does not include the main
regions xStart and xEnd in CamTable

752 SMC_CAM_TABLE_EMPTY_MASTER_RANGE The main range of the Cam data table is

235

Error
code Reasons Description

empty

753 SMC_CAM_TABLE_INVALID_MASTER_MINMAX Cam data master has invalid maximum and
minimum values

754 SMC_CAM_TABLE_INVALID_SLAVE_MINMAX Cam data slave device has invalid maximum
and minimum values

775 SMC_GIP_MASTER_DIRECTION_CHANGE During the slave axis coupling, the spindle
changed its direction of rotation

776 SMC_GIP_SLAVE_REVERSAL_CANNOT_BE_AVOID
ED

Input AvoidReversal has been set, but it
cannot be avoided from slave reversing

777 SMC_GIP_AVOID_REVERSAL_FOR_FINITE_AXIS Input AvoidReversal cannot be limited slave
axis setting

778 SMC_GIP_MASTERSTARTDISTANCE_MUST_BE_ZE
RO_BUFFERED

If BufferMode hasn’t been interrupted, then
MasterStartInstance cannot be positive

779 SMC_GIP_CANNOT_START_SYNC

Unable to start synchronization. This
situation may occur when GearInPos is
commanded to act as a buffer or hybrid
motion, and the main controller is in a
stationary state when activated

800 SMC_BC_BL_TOO_BIG Gear return ratio (fBacklash) too large
(>position periode/2)

825 SMC_QPROF_DIVERGES Internal error: quadratic trajectory
calculation failed

826 SMC_QPROF_INVALID_PARAMETER Internal error: quadratic trajectory
calculation failed

827 SMC_QPROF_NO_RESULT Internal error: quadratic trajectory
calculation failed

828 SMC_QPROF_INVALID_NEW_LBD Internal error: quadratic trajectory
calculation failed

829 SMC_QPROF_BAD_NEGOTIATION Internal error: quadratic trajectory
calculation failed

830 SMC_QPROF_INVALID_INTERVAL Internal error: quadratic trajectory
calculation failed

831 SMC_QPROF_NOT_ENOUGH_PHASES Internal error: quadratic trajectory
calculation failed

832 SMC_TG_INTERNAL_ERROR Internal error: quadratic trajectory
calculation failed

850 SMC_SRT_NOT_STANDSTALL_OR_POWEROFF Allow action only when stationary or
powered off

851 SMC_SRT_INVALID_RAMPTYPE Invalid slope type

852 SMC_SMT_NOT_STANDSTALL_OR_POWEROFF Allow action only when stationary or
powered off

853 SMC_SMT_INVALID_MOVEMENTTYPE_OR_POSITI
ONPERIOD Invalid motion type or position period

854 SMC_SMT_AXIS_NOT_VIRTUAL Function block only applies to virtual axes
1000 SMC_NO_LICENSE Target not licensed by CNC
1001 SMC_INT_VEL_ZERO Unable to process path because set speed=0

1002 SMC_INT_NO_STOP_AT_END The end speed of the last object in the path
<>0

1003 SMC_INT_DATA_UNDERRUN

Warning: The geographic information list
was processed in DataIn, but did not reach
the end of the list.
Reason:
Unable to set EndOfList
SMC_Interpolator of queue in DataIn faster
than path generation function blocks

1004 SMC_INT_VEL_NONZERO_AT_STOP speed when stop>0
1005 SMC_INT_TOO_MANY_RECURSIONS SMC_Interpolator excessive recursion. Soft

236

Error
code Reasons Description

motion error

1006 SMC_INT_NO_CHECKVELOCITIES
SMC_CheckVelocity is not the last
processed function block, it accessed data
outside the queue through poqDataIn

1007 SMC_INT_PATH_EXCEEDED Internal or numerical error

1008 SMC_INT_VEL_ACC_DEC_ZERO Speed and acceleration/deceleration are zero
or too low

1009 SMC_INT_DWIPOTIME_ZERO Use dwIpoTime=0 to call FB
1010 SMC_INT_JERK_NONPOSITIVE Jerk invalid, as Jerk must be positive

1011 SMC_INT_QPROF_DIVERGES Internal error. The calculation of quadratic
velocity distribution does not converge

1012 SMC_INT_INVLALID_VELOCITY_MODE Invalid speed mode

1013 SMC_INT_TOO_MANY_AXES_INTERPOLATED
The number of inserted axes exceeds the
allowed number of axes. You are using a
restricted version

1014 SMC_INT_DEGENERATE_SEGMENT
This segment is numerically degenerate: it is
very short and located at the end of the
queue. It should be ignored

1015 SMC_HIGH_CURVATURE_SPLINE

The calculation of interpolation points failed
because the curvature of the spline curve is
too high. Try changing the path to avoid
sharp corners

1050 SMC_INT2DIR_BUFFER_TOO_SMALL
Warning: The poqDataIn of the created
output queue is too small, cannot guarantee
compliance with stopping

1051 SMC_INT2DIR_PATH_FITS_NOT_IN_QUEUE The path is not completely in the queue
1070 SMC_XINT_INVALID_DIRECTION Direction input has invalid value

1071 SMC_XINT_NOINTERSECTION Unable to determine the position of the given
x position on the CNC path

1080 SMC_WAR_INT_OUTQUEUE_TOO_SMALL
Warning: The poqDataIn of the created
output queue is too small, cannot guarantee
compliance with station

1081 SMC_WAR_END_VELOCITIES_INCORRECT Warning: Inconsistent final speed

1100 SMC_CV_ACC_DEC_VEL_NONPOSITIVE Speed and acceleration/deceleration values:
non positive

1120 SMC_CA_INVALID_ACCDEC_VALUES fGapVelocity/fGapAcceleration/FGAPDegre
gation values: non positive

1130 SMC_TOK_COMPLETE_TOKEN_AT_END_OF_INPU
T

Input has been exhausted, but there are still
unfinished marks

1131 SMC_TOK_NOT_A_VALID_TOKEN Input does not match any token type

1132 SMC_TOK_MUBILITY_INPUT Ambiguous input, there may be multiple
token types

1133 SMC_TOK_STRING_TOO_LONG_FOR_TOKEN
The string is too long to store in the token.
(String text, variable name, or identifier too
long)

1134 SMC_TOK_INVALID_NUMLIT Invalid numeric text

1150 SMC_PRS_FUNC_DECL_TOO_MORY_ARGMENTS Too few parameters provided for the
function in G code

1151 SMC_PRS_FUNC_DECL_TOO_MANY_ARGMENTS Too many parameters provided for the
function in G code

1152 SMC_PRS_FUNC_DECL_WRONG_ARGUMENT_TYP
E

Check the parameter types that match the
function declaration. Return error

1153 SMC_PRS_LOCAL_VAR_NOT_FOUND Cannot find local variable on the stack
1154 SMC_PRS_INVALID_STRING Unable to read string from token

1155 SMC_PRS_TOO_MANY_CLOSING_BRACKETS More closing parentheses than opening
parentheses

1156 SMC_PRS_TOO_MANY_OPENING_BRACKETS More start parentheses than end parentheses

237

Error
code Reasons Description

1157 SMC_PRS_NO_SUCH_INFIX_OPERATOR Unable to find infix operator
1158 SMC_PRS_NO_SUCH_PREFIX_OPERATOR Unable to find prefix operator

1159 SMC_PRS_OPERATOR_INVALID_PRECEDENCE Obtain two operators with equal priority but
unequal associativity

1160 SMC_PRS_NOT_A_TERM Expected validity period
1161 SMC_PRS_EXPRESSION_INVALID_SEQUENCE Invalid tag sequence found in expression
1162 SMC_PRS_TOO_MANY_TERMS Obtained more terms than expected

1163 SMC_PRS_STACK_OVERFLOW Unable to parse expression because the stack
is too small

1164 SMC_PRS_VAR_NAME_READY_USED
The name of a subroutine parameter or
variable is already used for other subroutine
parameters or parameters

1165 SMC_PRS_INCOMPLETE_SENTENCE_IN_TOKEN_Q
UEUE

The input token queue of the g-code parser
does not contain a complete g-code
statement

1167 SMC_PRS_TOO_MANY_SUBPROGRAMS Cannot store subroutine declaration because
symbol table capacity has been exceeded

1168 SMC_PRS_TOO_MANY_SUBPROGRAM_PARAMETE
RS

The maximum number of subroutine
parameters has been exceeded

1169 SMC_PRS_SUBPROGRAM_LOOKUP_FAILED

Failed to find subroutine declaration.
Perhaps the subroutine name is incorrect, or
the search path for the subroutine is
incomplete

1170 SMC_PRS_VAR_NOT_FOUND Variable not found in symbol table
1171 SMC_PRS_TOKEN_TYPE_UNKNOWN Unknown token type
1172 SMC_PRS_GOT_NO_TERM No terminology after G-address

1173 SMC_PRS_INVALID_VAR_TYPE Unknown variable type (not LREAL, BOOL,
or string)

1174 SMC_PRS_UNEXPECTED_TOKEN Different types of tokens (such as operators
or identifiers) are required here

1175 SMC_PRS_ID3_EXPECTED An identifier with a length of 3 or longer is
required here

1176 SMC_PRS_ID_TOO_LONG Identifier too long (over 80 characters)

1177 SMC_PRS_GADDRESS_EXPECTED G address is required here (such as "G", "F",
"X")

1178 SMC_PRS_NWORD_EXPECTED An N character is required here (such as'
N10 ')

1179 SMC_PRS_NWORD_INVALID_SENTURE_NUMBER The sentence number is not within the range
of [0,..., 16 # FFFFFFFF]

1180 SMC_PRS_NWORD_SENTENCE_NUMBER_NO_NUM
BER_LITERAL

The sentence number must be a numerical
literal. (For example, expressions are not
allowed.)

1181 SMC_PRS_USE_OF_RESERVED_KEYWORD Identifier is a reserved keyword and cannot
be used here

1182 SMC_PRS_SUBPROGRAMS_SIGNATURE_MISMATC
H

A different signature is used or the
subroutine declaration has been read error

1183 SMC_PRS_INITIAL_VALUE_HAS_WRONG_TYPE The initial value of this local variable has the
wrong type

1184 SMC_PRS_TOO_MANY_LOCAL_VARIABLES The maximum number of subroutine
parameters has been exceeded

1185 SMC_PRS_SUBPROG_MUST_BE_FIRST_SENTENCE The subroutine declaration must be the first
sentence in the g code file

1186 SMC_PRS_ONLY_ONE_subgram_PER_FILE_ALLOWE
D

Only one subroutine is allowed in the G code
file.

1187 SMC_PRS_LET_AFTER_REGULAR_SENTENCE LET declaration is not allowed after regular
G-code statements

1188 SMC_PRS_UNMATCHED_END_SUBPROGRAM END_SUBPROGRAM. statement does not

238

Error
code Reasons Description

match subroutine declaration

1189 SMC_PRS_UNEXPECTED_TOKENS_AFTER_SUBPR
OGRAM

After END_SUBPROGRAM., no more
tokens allowed

1190 SMC_PRS_MISSING_END_SUBPROGRAM The subroutine does not terminat with END_
SUBPROGRAM.

1200 SMC_DEC_ACC_TOO_LITTLE Acceleration value not allowed
1201 SMC_DEC_RET_TOO_LITTLE Deceleration value not allowed
1202 SMC_DEC_OUTQUEUE_RAN_EMPTY Insufficient data. Queue read and empty

1203 SMC_DEC_JUMP_TO_UNKNOWN_LINE Unable to perform jump to line because the
line number is unknown

1204 SMC_DEC_INVALID_SYNTAX Invalid syntax
1205 SMC_DEC_3DMODE_OBJECT_NOT_SUPPORTED Object not supported in 3D mode

1206 SMC_DEC_NEGATIVE_PERIOD Invalid negative value as additional axis
period

1207 SMC_DEC_DIMENSIONS_EXCLUSIVE_AU Interpolation is not performed on both axes
A and U. PA and PU are mutually exclusive

1208 SMC_DEC_DIMENSIONS_EXCLUSIVE_BV Interpolation is not performed on both axes
B and V. PB and PV are mutually exclusive

1209 SMC_DEC_DIMENSIONS_EXCLUSIVE_CW Interpolation is not performed on both axes
C and W. PC and PW are mutually exclusive

1210 SMC_DEC_DCS_NOT_ALL_OF_ABC_GIVEN

For G54/G55/G56, if the directional mode is
not equal to
SMC_ORI_CONVENTION.ADDAXES,
then all A, B, C or none must be given

1211 SMC_DEC_DCS_2D_NOT_IN_XY_PLANE The Z-axis of the decoder CS must be equal
to the Z-axis of the machine CS

1212 SMC_DEC_CIRCLE_NON_UNIFORM_SCALING Scaling the circle or ellipse that has twist
command

1213 SMC_DEC_ROTATION_AFFECTS_SCALING The new relative rotation of DCS (G55) will
affect scaling

1214 SMC_DEC_DCS_NOT_ALL_OF_IJK_GIVEN For G54/G55/G56, all I, J, K or none must
be given

1250 SMC_IPR_LOCAL_VAR_UNKNOWN_TYPE Unable to read local variable due to invalid
type

1251 SMC_IPR_LVALUE_WRONG_TYPE The variable type that should be written is
incorrect

1252 SMC_IPR_EVAL_STACK_OVERFLOW Unable to evaluate expression because the
evaluation stack is too small

1253 SMC_IPR_NOT_A_NUMBER The numerical term becomes NaN
1254 SMC_IPR_DIVISION_BY_ZERO Divide by zero
1255 SMC_IPR_INVALID_SCALING_FACTORS Invalid Scale Factor

1256 SMC_IPR_LVALUE_WRONG_TYPE When the subroutine returns, the interpreter
stack is empty. internal error

1257 SMC_IPR_INTERPRETER_STACK_OVERFLOW
The interpreter stack is too small. There are
too many local variables in the G code or too
many active subroutines

1258 SMC_IPR_INVALID_INTERPRETER_STACK_BUFFE
R

The given buffer of the interpreter stack is 0
or less than 1024 bytes

1259 SMC_IPR_BUFFER_TOO_SMALL The buffer of the output queue is too small
1280 SMC_DNCCS_NO_DATA There is no available data at all

1281 SMC_DNCCS_TOO_MANY_CALLSTACKS There are too many call stacks between the
current state of iObjNo and the interpreter

1282 SMC_DNCCS_INVALID_PROGRAM_INDEX Invalid program index
1283 SMC_DNCCS_TOO_MANY_PROGRAM Too many different programs
1284 SMC_DNCCS_WRONG_TASK FB called the wrong task
1300 SMC_GCV_BUFFER_TOO_SMALL buffer too small
1301 SMC_GCV_BUFFER_WRONG_TYPE Wrong type of buffer element

239

Error
code Reasons Description

1302 SMC_GCV_UNKNOWN_IPO_LINE Unable to find the current row of the
interpolator

1400 SMC_CNC_INTERNAL_ERROR Internal error in CNC

1401 SMC_PATH_MAX_HPOINTS_EXCEEDED

The path element cannot be saved beyond H
switching points of MAX_IPOSWITCHES.
Adjust the switching point using different
"O" values, or reduce the number of H-points
for each path element

1410 SMC_TRC_G75_NOT_ALLOWED G75 is not allowed during tool radius
correction

1411 SMC_TRC_QUEUE_FULL_NON_CARTESIAN The queue is full, but there are no other
Cartesian elements

1412 SMC_TRC_SPLINE3D_5_NOT_SUPPORTED Tool radius correction does not support
motion type SPLINE3D_5

1414 SMC_TRC_PLANE_CHANGE_NOT_ALLOWED Do not allow plane changes during tool
radius correction

1450 SMC_NAV_MAX_SUBSPROGRAM_NESTING_EXCE
EDED

The maximum nesting level for subroutine
call has been exceeded

1451 SMC_NAV_RETURN_FROM_MAIN Do not allow main G code programs to
return statements

1452 SMC_NAV_SUBPROGRAM_DECLARATION_NOT_F
OUND

The subroutine declaration was not found in
the subroutine CNC file

1453 SMC_NAV_NOT_ENOUGH_SPACE_FOR_COMPLET
E_SENTENCE

Unable to add the next G code statement to
the output statement queue because there is
not enough space

1500 SMC_NO_CNC_REF_TYPE The given CNC program is not SMC_ CNC_
REF type

1501 SMC_NO_OUTQUEUE_TYPE The given output queue is not SMC_
OutQueue type

1502 SMC_GEOINFO_BUFFER_MISALIGNED Not using 4-byte aligned buffer section in
pbyBuffer

1600 SMC_3D_MODE_NOT_SUPPORTED Function block only applies to 2D paths
1700 SMC_SAA_SMOOTHAREA_TOO_LARGE Smooth range too large
1701 SMC_SAA_SP_INVALID_INPUT Invalid input dSmoothingPart]0..1]

1800 SMC_SA_QUEUE_NOT_IN_BUFFER

SMC_SegmentAnalyzer detected that the out
of queue buffer is full but not complete. The
function block can only run when OutQueue
is fully suitable for the buffer

1801 SMC_SA_QUEUE_CHANGED_DURING_OP When the function block operates on it, the
out of queue buffer has changed

1820 SMC_OS_INVALID_PARAMETER Invalid input value inside
dSplittingParameter

1830 SMC_BSSP_IPO_NOT_ACTIVE Unable to save location. Inserter not active

1831 SMC_BS_SAVEDPOS_NOT_REACHED No saved location has been found so far. It
may have taken a different path

1832 SMC_BS_NO_POS_STORED

The structure passed in ePos does not contain
a saved location. SMC_BlockSearchSavePos
did not executed or executed in an incorrect
manner

1900 SMC_INVALID_FEATURE_FLAG The functional symbol must be within the
range of {1,..., 31}

1901 SMC_SMB_HFUN_NOT_SUPPORTED Function block does not support the h
function

1902 SMC_SMB_ONLY_3DMODE Function block only works in 3D mode
1903 SMC_SMB_ERROR_COMPUTING_SPLINE Calculate the internal error of a spline curve
1910 SMC_SMM_INVALID_PARAM_NUMBER WadAdditionalParameter too large
1950 SMC_INVALID_PARAMETER One of the input values is invalid

240

Error
code Reasons Description

1951 SMC_BLENDING_NOT_SUPPORTED_BY_PREVIOUS
_MOVEMENT The previous move does not support mixing

1952 SMC_BUFFERED_NOT_SUPPORTED_BY_PREVIOUS
_MOVEMENT

The previous move does not support
buffered moves

1953 SMC_INHERIT_OWNER_ACTIVE_MOVEMENT_NOT
_CALLED

Cannot inherit owner because activity move
has not been called in this loop. internal error

1954 SMC_MOVING_WITHOUT_ACTIVE_MOVEMENT

The axis is moving, but there is no active
move function block. Losing subsequent
movements in one unstoppable movement
after another

1955 SMC_BUFFER_MODE_NOT_SUPPORTED Command movement does not support
configured buffering mode

1956 SMC_ERROR_IN_A_PREVIOUS_MOVEMENT An error occurred during the previous move

1957 SMC_MORE_THAN_ONE_MOVEMENT_PER_INSTA
NCE

Only one busy buffer/mixed move allowed
per FB instance

2000 SMC_RNCF_FILE_DOESNT_EXIST file does not exist
2001 SMC_RNCF_NO_BUFFER Unallocated buffer
2002 SMC_RNCF_BUFFER_TOO_SMALL buffer too small
2003 SMC_RNCF_DATA_UNDERRUN Insufficient data. Buffer read, it is empty
2004 SMC_RNCF_VAR_COULDNT_BE_REPLACED Unable to replace placeholder variable

2005 SMC_RNCF_NOT_VARLIST Input pvl does not point to SMC_ VARLIST
Object

2006 SMC_RNCF_NO_STRINGBUFFER Input pStringBuffer does not be used or
pointed to SMC_StringBuffer type variables

2007 SMC_RNCF_STRINGBUFFER_OVERRUN In CNC programs, more different strings are
used than the string buffer can accommodate

2008 SMC_RNCF_SUBPROGRAM_FILE_NOT_FOUND Unable to find file for subroutine
2050 SMC_RNCQ_FILE_DOESNT_EXIST could not open file
2051 SMC_RNCQ_NO_BUFFER Undefined buffer
2052 SMC_RNCQ_BUFFER_TOO_SMALL buffer too small
2053 SMC_RNCQ_UNEXPECTED_EOF Unexpected end of file
2100 SMC_ADL_FILE_CANNOT_BE_OPENED could not open file

2101 SMC_ADL_BUFFER_OVERRUN Buffer overflow. WriteToFile must be called
more frequently

2200 SMC_RCAM_FILE_DOESNT_EXIST could not open file
2201 SMC_RCAM_TOO_MUCH_DATA The saved cam is too large
2202 SMC_RCAM_WRONG_COMPILE_TYPE Incorrect compilation mode
2203 SMC_RCAM_WRONG_VERSION The version of the file is incorrect
2204 SMC_RCAM_UNEXPECTED_EOF Unexpected end of file

3001 SMC_WDPF_CHANNEL_OCCUPIED

This error is outdated and reserved for
compatibility only.
SMC_WDPF_TIMEOUT_PREPARING_LI
ST

3002 SMC_WDPF_CAN_CREATE_FILE This error is outdated and reserved for
compatibility only. could not create file

3003 SMC_WDPF_ERROR_WHEN_READING_PARAMS This error is outdated and reserved for
compatibility only. Error reading parameters

3004 SMC_WDPF_TIMEOUT_PREPARING_LIST
This error is outdated and reserved for
compatibility only. Timed out when
preparing parameter list

5000 SMC_ENC_DENOM_ZERO
The conversion coefficient of encoder
reference dwRatioTechUnitsDenom named
is 0

5001 SMC_ENC_AXISUSEDBYOTHERFB Attempting to handle other modules moving
on the encoder axis

5002 SMC_ENC_FILTER_DEPTH_INVALID Invalid filter depth
6000 SMC_INTERNAL_ERROR_INIT_MOVEMENT Internal error when initializing new move

241

Error
code Reasons Description

6001 SMC_INVALID_AXIS_TYPE Invalid axis type, not finite or modular
(internal error)

10000 SMC_PCCQ_POINTBUFFERTOOSMALL Buffer pBuffer too small

10001 SMC_PCCQ_INPUTBUFFERFULLBUTNOTFINALIZE
D

The function block must be applied to a path
that is completely suitable for the buffer

11000 SMC_AXIS_GROUP_WRONG_STATE The axis group is in an error state for the
requested operation

11001 SMC_AXIS_GROUP_TOO_MANY_AXES Axis group has been added with more than
the maximum allowed number of axes

11002 SMC_AXIS_GROUP_INVALID_DYNLIMITS
Invalid dynamic limit for a single axis
(fSWMaxVelocity/
acceleration/deceleration/jerk)

11004 SMC_AXIS_GROUP_INVALID_COORD_SYSTEM The given coordinate system is invalid for
the requested operation

11005 SMC_AXIS_GROUP_SINGLE_AXISS_ERROR The axis of the axis group is in the wrong
state

11006 SMC_MOVE_INVALID_BUFFER_MODE The given buffer mode is not supported

11007 SMC_MOVE_INVALID_DYNAMIC_FACTOR The dynamic coefficient is not within the
range of [0.. 1]

11008 SMC_MOVE_INVALID_DYNAMICS Invalid dynamic restrictions for movement
11009 SMC_AXIS_GROUP_AXIS_NOT_PART_OF_GROUP The given axis is not part of an axis group
11010 SMC_AXIS_GROUP_NOT_SUPPORTED The requested operation is not supported

11011 SMC_AXIS_GROUP_KINEMATICS_NOT_SET No kinematic configurations have been
configured yet

11012 SMC_AXIS_GROUP_WRONG_NUMBER_OF_AXES
The number of axes is not equal to the
number of axes required for motion
transformation

11013 SMC_AXIS_GROUP_INTERRUPTED_BY_SINGLE_A
XIS

Coordinated movement interrupted by single
axis movement

11014 SMC_AXIS_GROUP_FOLLOW_SETVALUES Error tracking calculated settings

11015 SMC_AXIS_GROUP_TOO_MANY_dependency One axis group cannot rely on multiple axis
groups

11016 SMC_AXIS_GROUP_MUTUAL_DEPENDENCY Axis group A may not depend on another
axis group that depends on A

11017 SMC_AXIS_GROUP_DEPENDENCY_IN_DIFFERENT
_TASK

The dependent axis group must be executed
in the same task

11018 SMC_AXIS_GROUP_AXISS_IN_DIFFERENT_TASK Axes belonging to an axis group must be
executed in the same task

11019 SMC_AXIS_GROUP_PCS_STILL_IN_USE
When PCS is still being used by buffered
motion commands, the function block
undergoes a second activation

11020 SMC_AXIS_GROUP_CMD_ABORTED_DUE_TO_ERR
OR Error in previous motion command

11021 SMC_AXIS_GROUP_INVALID_PARAMETER Invalid parameters for management function
block

11022 SMC_AXIS_GROUP_UNSUPPORTED_RAMPTYPE
One axis in the group uses an unsupported
ramp type. Only supports trapezoidal and
quadratic types

11023 SMC_MOVE_INVALID_TRANSITION_PARAMETER Invalid conversion parameter

11024 SMC_AXIS_GROUP_INTERNAL_ERROR Internal error in the state machine of the axis
group

11025 SMC_AXIS_GROUP_CPTR_CANNOT_FOLLOW
CP tracking: unable to maintain path;
Attempting to reduce dynamics on the path
and/or entering CP tracking

11026 SMC_AXIS_GROUP_CONTINUE_WRONG_POSITION The current position does not allow
continuation

11027 SMC_AXIS_GROUP_CONTINUE_BUFFER_TOO_SM The buffer in ContinueData is too small;

242

Error
code Reasons Description

ALL Using large external move queue buffer

11028 SMC_AXIS_GROUP_CONTINUE_WRONG_CHECKS
UM

The parity and error in continue data,
continue data is not written by
MC_GroupInterrupt, but is modified later

11029 SMC_AXIS_GROUP_IDLE_WAIT_AXES_MOVING

Command SMC_GroupWait,
simultaneously, the axis moves
independently of the axis group (single axis
movement or similar)

11030 SMC_AXIS_INVERSE_TRAFO_EXCEEDING_POSLIM
ITS

The inverse transformation will cause the
axis value to exceed the configured limit

11031 SMC_AXIS_GROUP_CANNOT_ADD_SAME_AXIS Prohibit adding the same axis to the axis
group twice

11032 SMC_AXIS_GROUP_TRANSFORMATION_NOT_SET Do not set conversion

11033 SMC_AXIS_GROUP_NON_RESUMABLE_ERROR Unable to recover path after current axis
group error

11034 SMC_AXIS_GROUP_CONTINUE_DATA_NOT_WRIT
TEN

The continuation data for
MC_GroupContinue was not written
correctly. (MC_GroupInterrupt not
called/unrecoverable axis group error)

11100 SMC_KERNEL_PTP_INTERNAL_ERROR Internal errors in the kernel
11101 SMC_KERNEL_PTP_INVALID_TASKCYCLETIME Task cycle time is not positive
12000 SMC_TRAFO_INVALID_PARAMETERS The converted parameter value is invalid

12001 SMC_TRAFO_INVALID_CONSTELLATION The requested location is outside the
converted work area

12002 SMC_TRAFO_INVALID_COUNPING

Tools cannot work together with the
positioning components of the machine.
Alternatively, the positioning component is
not implemented ISMPocationKinetics2, or
this tool is unable to process directional
images for positioning

12003 SMC_TRAFO_NOT_INITIALIZED FB realized |ISMkineticWithinitialization|,
but not initialized yet

12004 SMC_TRAFO_NO_TOOL_WITH_OFFSET_ALLOWED

Special errors in the positioning section
Kin_4Axis_Palletzer, it realized
ISMPositionKinetics_Offset2. But in reality,
it's not possible to handle offsets <>0

12005 SMC_AXIS_GROUP_TOOL_OFFSET_INCOMPATIBL
E_WITH_KINEMATICS

The configured tool offset is not compatible
with the used kinematics

12100 SMC_CP_CACHE_FULL CP planner's cache size is too small

12101 SMC_CP_EVAL_ERROR Calculation of position on path element
failed (internal error)

12102 SMC_CP_NON_CONTINUABLE_STATE Reached non continuous state (internal error)

12103 SMC_CP_MAX_LENGTH_EXCEEDED Exceeded maximum trajectory length
(internal error)

12104 SMC_CP_ACCELERATION_TOO_HIGH Path acceleration too high (invalid state,
internal error)

12105 SMC_CP_MAX_ITERATIONS_EXCEEDEDSMC_CP_
MAX_ITERATIONS_EXCEEDED

Exceeded maximum number of iterations
(internal error)

12106 SMC_CP_NO_TRAJECTORY Unable to calculate trajectory (internal error)
12107 SMC_CP_OUT_QUEUE_FULL Output queue full (internal error)

12108 SMC_CP_QUEUE_UNDERRUN Insufficient queue operation: there are no
remaining elements in the queue

12109 SMC_CP_INVALID_QUEUE Invalid queue (invalid size or pointer)

12110 SMC_CP_Blend_INTERNAL_ERROR Internal error while mixing two CP
movements

12111 SMC_CP_CIRCLE_COLLINEAR_POINTS The three points defined a circle are collinear
12112 SMC_CP_CIRCLE_CENTER_NOT_ON_BISECTOR The center point is not on the vertical

243

Error
code Reasons Description

bisector of the starting and ending points
12113 SMC_CP_CIRCLE_RADIUS_ZERO Zero radius

12114 SMC_CP_CIRCLE_DISTANCE_LARGER_THAN_DIA
METER

The distance between the start and end points
is greater than the diameter (when trying to
create a circle using
SMC_Circ_Mode.radius)

12115 SMC_CP_CIRCLE_START_AND_ENDPOINT_EQUAL Equal starting and ending points
(SMC_Circ_Mode.Radius)

12116 SMC_CP_BLENDING_DEGENERATE_SPLINE Mixed spline degradation (too short or
irregular)

12117 SMC_CP_ELEMENT_TOO_SHORT Unable to create path element because it is
too short

12118 SMC_CP_CAN_NOT_CUT_PATH Unable to cut path to abort movement
(internal error)

12119 SMC_CP_INVALID_ANGULAR_VEL_ACC
The given angular velocity or acceleration is
invalid (quaternions with non zero real parts,
internal error)

12120 SMC_CP_INVALID_ORIENTATION
Invalid given direction (non orthogonal
matrix or non identity quaternion, internal
error)

12121 SMC_CP_TIME_BUDGET_EXCEEDED Exceeded the calculated given time budget
(internal error)

12122 SMC_AXIS_GROUP_AXIS_LIMIT_VIOLATED

Axis restrictions have been violated. If the
CP moves too close to the singularity or the
path has very high curvature, this situation
may occur

12125 SMC_CP_CONFIGS_DIFFER
The kinematic configuration of the starting
position is different from the ending position.
CP motion will pass through singularities

12126 SMC_CP_BUS_TASK_NOT_CALLED

This error is outdated and reserved for
compatibility only. If the command CPhalt/-
stop is used, some information must be
transferred to the bus task. We expect this to
occur before the next cycle of the slow task

12127 SMC_CP_NO_ROOT_IN_INTERVAL_FOUND Unable to find the stop trajectory in the
interval. (Internal error)

12128 SMC_CP_KIN_DOES_NOT_SUPPORT_AXIS_ORIENT
ATION_IPO

Kinematics does not support continuous path
movement direction mode 'axis'

12129 SMC_CP_AXIS_ORIENTATION_IPO_NOT_SUPPORT
ED_FOR_CPTR

CP movement with dynamic PCS (tracking)
does not support axis direction interpolation
mode

12130 SMC_CP_INVALID_PATH_ELEM Invalid path element created (internal error)

12131 SMC_CP_TRANSITION_NOT_SMOOTH
The conversion between two path elements
is not G2 continuous and did not stop
(internal error)

12132 SMC_CP_AXIS_ORIENTATION_IPO_CONFIG_DIFFE
RS

The axis direction interpolation mode was
used, but there is singularity in positional
kinematics between the start and end
positions

12133 SMC_CP_AXIS_ORIENTATION_IPO_OFFSET2_NOT_
IMPLEMENTED

Position kinematics has configurations but
does not implement
interfacesIsmPositionKinetics_Offset2. In
this case, axis direction interpolation is not
possible

12134 SMC_CP_ROTARY_AXIS_PERIOD_MISMATCH
The target position of the rotation axis will
not be reached within the command cycle.
(For example, the instruction target position

244

Error
code Reasons Description

is -170°, but it will reach the target at
position 190°.) This means that the selected
target position interpolation is not
compatible with the instruction position

12135 SMC_CP_ROTARY_AXIS_RANGE_VIOLATION
During CP movement, the rotation axis
violated the allowed axis range. CP
movement is not within the work area

12136 SMC_CP_COMPUTE_TARGET_DISCONTINUITY
Due to the discontinuity in the end position
(internal error), the target trajectory cannot
be calculated

12137 SMC_CP_TRACTION_NOT_SMOOTH
The trajectory is not smooth, and the phase
end state is not equal to the current state
(internal error)

12138 SMC_CP_ERROR_CREATING_PARAM_TRANSFOR
M

Unable to create parameter conversion
(internal error)

12139 SMC_CP_PTP_DATA_NUMBER_OF_AXES Error generating path invariant PTP element
(internal error)

12140 SMC_CP_NEGATIVE_PATH_VELOCITY
Error calculating new trajectory: Path
velocity after stage 1 (positive acceleration
of length dTau1) is negative (internal error)

12141 SMC_CP_TRANSITIONING_FROM_SINGLE_AXIS_M
OVEMENT_NOT_SUPPORTED

Transition from single axis movement to
continuous path movement is not supported

12142 SMC_CP_PLANNER_NO_PROGRESS

CP-planner has not made any progress. This
is an internal error that can trigger very sharp
corners (such as mixing short elements or
small angular distances)

12143 SMC_CP_INTERNAL_EVAL_CACHE_ERROR There is an internal error in the evaluation
cache of the CP planner

WUXI XINJE ELECTRIC CO., LTD.

Address: 816 Jianshe West Road, Binhu District, Wuxi City, Jiangsu Province, China

Tel: 0510-85134136 Fax: 0510-85111290

Website: www.xinje.com Email: sales@xinje.com

	1. Basic instructions
	1-1. Bit logic instructions
	1-1-1. Basic bit logic instructions
	1-1-1-1. Bit AND
	1-1-1-2. Boolean AND
	1-1-1-3. Bit OR
	1-1-1-4. Boolean OR
	1-1-1-5. Bit NOT
	1-1-1-6. Boolean NOT
	1-1-1-7. Bit XOR
	1-1-1-8. Boolean XOR

	1-1-2. Set priority and reset priority trigger ins
	1-1-2-1. Set priority trigger SR
	1-1-2-2. Reset priority trigger RS

	1-1-3. Data unit type
	1-1-3-1. Rising edge detection R_TRIG
	1-1-3-2. Falling edge detection F_TRIG

	1-2. Timer
	1-2-1. Pulse timer TP
	1-2-2. Power on delay timer TON
	1-2-3. Power off delay timer TOF
	1-2-4. RTC

	1-3. Counter
	1-3-1. Up counter CTU
	1-3-2. Down counter CTD
	1-3-3. Up/down counter CTUD

	1-4. Data Processing Instructions
	1-4-1. Selection commands
	1-4-1-1. Binary choice instruction SEL
	1-4-1-2. Take the maximum value MAX
	1-4-1-3. Take the minimum value MIN
	1-4-1-4. Limit value LIMIT
	1-4-1-5. Multiple choice MUX

	1-4-2. Compare Instructions
	1-4-3. Shift instruction
	1-4-3-1. Shift left SHL
	1-4-3-2. Shift right SHR
	1-4-3-3. Rotate left ROL
	1-4-3-4. Rotate right ROR

	1-5. Operation instructions
	1-5-1. Assignment instruction
	1-5-1-1. Assignment instruction MOVE

	1-5-2. Arithmetic operation instructions
	1-5-2-1. Addition operation ADD
	1-5-2-2. Subtraction operation SUB
	1-5-2-3. Multiplication operation MUL
	1-5-2-4. Division operation DIV
	1-5-2-5. Remainder operation MOD

	1-5-3. Mathematical operation instructions
	1-5-3-1. Absolute value ABS
	1-5-3-2. Square root SQRT
	1-5-3-3. Exponent EXP
	1-5-3-4. Natural logarithm LN
	1-5-3-5. Logarithm with a base of 10 LOG
	1-5-3-6. Sine function SIN
	1-5-3-7. Cosine function COS
	1-5-3-8. Arccosine functionACOS
	1-5-3-9. Arcsin function ASIN
	1-5-3-10. Tangent function TAN
	1-5-3-11. Arctangent function ATAN

	1-5-4. Address operation instruction
	1-5-4-1. Data type size SIZEOF
	1-5-4-2. Address operator ADR
	1-5-4-3. Bit address operator BITADR

	1-5-5. Data conversion instructions
	1-5-5-1. BCD code and integer data conversion
	1-5-5-2. BOOL_TO_<TYPE> boolean type conversion da
	1-5-5-3. BYTE_TO_<TYPE> byte type conversion data
	1-5-5-4. < Integer data > _TO_<TYPE> integer type
	1-5-5-5. REAL_TO_<TYPE> Real type conversion instr
	1-5-5-6. TIME_TO_<TYPE> time type conversion instr
	1-5-5-7. DATE_TO_<TYPE> Date type conversion instr
	1-5-5-8. DT_TO_<TYPE> Date time type conversion in
	1-5-5-9. TOD_TO_<TYPE> Time type conversion instru
	1-5-5-10. STRING_TO_<TYPE> Character type conversi
	1-5-5-11. Rounding TRUNC

	2. Special instructions
	2-1. XSA series high speed count instructions
	2-1-1. Function overview
	2-1-2. Function block
	2-1-2-1. Command format
	2-1-2-2. Enable the high speed counter【XJ_Counter_
	2-1-2-3. Compare consistent output【XJ_Counter_Comp
	2-1-2-4. Preset value write in【XJ_Counter_PresetVa
	2-1-2-5. Probe【XJ_TouchProbe】
	2-1-2-6. Read the pulse width measurement value of
	2-1-2-7. Counter sample【XJ_Counter_Sample】
	2-1-2-8. Multiple segments compare【XJ_Counter_Comp
	2-1-2-9. Ring counting【XJ_Counter_SetRing】
	2-1-2-10. Reset port of compare consistent output【
	2-1-2-11. Clear the error【XJ_Counter_Reset】

	2-1-3. Parameter settings

	2-2. XS series high speed count instructions
	2-2-1. Function overview
	2-2-2. Function block
	2-2-2-1. Commands
	2-2-2-2. 【XJ_Counter】
	2-2-2-3. 【XJ_CounterGetValue】
	2-2-2-4. 【XJ_CounterSetValue】

	2-2-3. Parameter configuration
	2-2-4. Application example

	2-3. External interrupt and compare consistent int
	2-3-1. Function overview
	2-3-2. Function block
	2-3-2-1. Instruction format
	2-3-2-2. Open external interrupts and compare cons
	2-3-2-3. Write in interrupt parameters【XJ_WriteInt

	2-3-3. Parameter configuration
	2-3-4. Application example

	2-4. PID instructions
	2-4-1. Command format
	2-4-2. Related variables
	2-4-3. Function description
	2-4-4. Application example

	2-5. System library
	2-5-1. Function overview
	2-5-2. Function block introduction
	2-5-2-1. Command format
	2-5-2-2. CPU dominant frequency【XJ_GetCPUFrequency
	2-5-2-3. CPU temperature【XJ_GetCPUTemperature】
	2-5-2-4. CPU occupancy【XJ_GetCPUUsage】
	2-5-2-5. Memory size【XJ_GetMemSize】
	2-5-2-6. Memory occupancy【XJ_GetMemUsage】
	2-5-2-7. On time【XJ_GetBootTime】
	2-5-2-8. PLC name【XJ_GetPLCName】
	2-5-2-9. PLCID【XJ_GetPLCID】
	2-5-2-10. Firmware version【XJ_GetPLCVersion】
	2-5-2-11. Obtain network port information【XJ_GetNe
	2-5-2-12. Set network port information【XJ_SetNetIn
	2-5-2-13. Runtime version【XJ_GetRuntimeVersion】
	2-5-2-14. BOOT version【XJ_GetBootVersion】
	2-5-2-15. Obtain date and time【XJ_GetTime】
	2-5-2-16. Set date and time【XJ_SetTime】

	2-5-3. Parameter configuration

	2-6. ECAT_FROMTO
	2-6-1. Function overview
	2-6-2. Function block introduction
	2-6-2-1. Instruction format
	2-6-2-2. Remote IO read【XJ_ECATFromTo.XJ_EC_FROM】
	2-6-2-3. Remote IO write【XJ_ECATFromTo.XJ_EC_TO】

	2-6-3. Parameter configuration
	2-6-4. Application

	3. Motion instructions
	3-1. Single axis
	3-1-1. Single axis instruction overview
	3-1-2. Single axis instructions
	3-1-2-1. Axis enable [MC_Power]
	3-1-2-2. Axis reset [MC_Reset]
	3-1-2-3. Stop controller motion [MC_Stop]
	3-1-2-4. Pasue the motion [MC_Halt]
	3-1-2-6. Jog run [MC_Jog]
	3-1-2-7. Absolute position [MC_MoveAbsolute]
	3-1-2-8. Position overlay [MC_MoveAdditive]
	3-1-2-9. Relative position [MC_MoveRelative]
	3-1-2-10. Superimposed relative motion command [MC
	3-1-2-11. Speed control [MC_MoveVelocity]
	3-1-2-12. Position profile [MC_PositionProfile]
	3-1-2-14. Acceleration profile [MC_AccelerationPro
	3-1-2-15. Read actual position [MC_ReadActualPosit
	3-1-2-17. Read the current speed [MC_ReadActualVel
	3-1-2-18. Read axis error status [MC_ReadAxisError
	3-1-2-19. Read the axis bit parameter [MC_ReadBool
	3-1-2-26. Read the error [SMC_ErrorString]
	3-1-2-27. Recall driver/axis [SMC3_ReinitDrive]
	3-1-2-28. Set the axis COE parameter [SMC3_ETC_Wri
	3-1-2-29. Probe [MC_TouchProbe]

	3-1-3. Single axis function application

	3-2. Axis group function
	3-2-1. Axis group instruction
	3-2-2. Axis group instructions
	3-2-2-1. Add axis to axis group [MC_AddAxisToGroup
	3-2-2-4. Enable the axis group [MC_GroupEnable]
	3-2-2-6. Axis group reset [MC_GroupReset]
	3-2-2-7. Set axis group position [MC_GroupSetPosit
	3-2-2-8. Coordinate transform [MC_SetCoordinateTra
	3-2-2-9. Dynamic coordinate system conversion [MC_
	3-2-2-10. Axis group continue running [MC_GroupCon
	3-2-2-11. Axis group halt [MC_GroupHalt]
	3-2-2-12. Axis group interruption [MC_GroupInterru
	3-2-2-13. Axis group stop [MC_GroupStop]
	3-2-2-14. Kinematic coordinate transformation [MC_
	3-2-2-15. Set axis group overshoot value [MC_Group
	3-2-2-16. Absolute arc interpolation [MC_MoveCircu
	3-2-2-17. Relative arc interpolation [MC_MoveCirc
	3-2-2-18. Absolute position quick positioning [MC
	3-2-2-19. Relative position quick positioning [MC
	3-2-2-20. Absolute position linear interpolation
	3-2-2-21. Relative position linear interpolation
	3-2-2-22. Read the feedback position of the axis
	3-2-2-23. Read the feedback speed of the axis gro
	3-2-2-24. Read axis group configuration parameter
	3-2-2-25. Read axis group error [MC_GroupReadErro
	3-2-2-26. Read the current operating status of th
	3-2-2-27. Startup the axis group [SMC_StartupAxisG
	3-2-2-28. Enable the axis group [SMC_GroupPower]
	3-2-2-29. Break Assignment [SMC_GroupInterruptAt]
	3-2-2-30. Reboot after error reset [SMC_GroupEnab
	3-2-2-31. Axis group jog run [SMC_GroupJog]
	3-2-2-32. Axis group wait [SMC_GroupWait]

	3-2-3. Axis group function application

	3-3. CAM function
	3-3-1. CAM instruction list
	3-3-2. CAM instructions
	3-3-2-1. Cam table designation [MC_CamTableSelect]
	3-3-2-2. CAM binding [MC_CamIn]
	3-3-2-3. Cam unbinding [MC_CamOut]
	3-3-2-4. CAM action start [MC_GearIn]
	3-3-2-5. Position specified gear action [MC_GearIn
	3-3-2-6. Gear action release [MC_GearOut]
	3-3-2-7. Master slave axis phase offset [MC_Phasin
	3-3-2-8. CAM range [SMC_CAMBounds]
	3-3-2-9. CAM position range [SMC_CAMBounds_Pos]
	3-3-2-11. CAM tappet control [SMC_CamRegister]
	3-3-2-12. Get cam slave axis position [SMC_GetCam
	3-3-2-14. Read the cam table [SMC_ReadCAM]
	3-3-2-15. Modify the cam table [SMC_WriteCAM]

	3-3-3. CAM function application

	Appendix

